PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of initial porosity on material response under multi-axial stress state for S235JR steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of the initial porosity on the material response under multi-axial stress state for S235JR steel using the Gurson-Tvergaard-Needleman (GTN) material model was examined. Three levels of initial porosity, defined by the void volume fraction f0, were considered: zero porosity for fully dense material without pores, average and maximum porosity according to the metallurgical requirements for S235JR steel. The effect of the initial porosity on the material response was noticed for tensile elements under multi-axial stress state defined by high stress triaxiality sigma m/sigma e = 1.345. This effect was especially noticeable at the range of the material failure. In terms of the load-bearing capacity of the elements, the conservative results were obtained when maximum value of f0 = 0.0024 was used for S235JR steel under multi-axial stress state, and this value is recommended to use in the calculations in order to preserve the highest safety level of the structure. In usual engineering calculations, the average porosity defined by f0 = 0.001 may be applied for S235JR.
Twórcy
Bibliografia
  • 1. A. Biegus, D. Czepiżak, Experimental and numerical studies upon load-bearing capacity of locally strengthened corrugated sheets, Archives of Civil Engineering, 55, 1, 11-28, 2009.
  • 2. A. Biegus, D. Czepiżak, Evaluation of resistance of corrugated sheets under bending by a concentrated loads from the local suspensions, Archives of Civil Engineering, 56, 4, 283-297, 2010.
  • 3. P. Iwicki, Sensitivity analysis of buckling loads of bisymmetric i-section columns with bracing elements, Archives of Civil Engineering, 56, 1, 69-88, 2010.
  • 4. U. Radoń, Analysis of reliability and stability of bar structures, Archives of Civil Engineering, 56, 2, 155-172, 2010.
  • 5. M. Kamiński, P. Swita, Reliability modeling in some elastic stability problems via the generalized stochastic finite element method, Archives of Civil Engineering, 57, 3, 275-295, 2011.
  • 6. J. Chróścielewski, M. Rucka, K. Wilde, W. Witkowski, Formulation of spectral truss element for guided waves damage detection in spatial steel trusses, Archives of Civil Engineering, 55, 1, 43-63, 2009.
  • 7. W. Witkowski, M. Rucka, K. Wilde, J. Chróścielewski, Wave propagation analysis in spatial frames using spectral timoshenko beam elements in the context of damage detection, Archives of Civil Engineering, 55, 3, 367-402, 2009.
  • 8. W. Gilewski, M. Sitek, The inf-sup condition tests for shell/plate finite elements, Archives of Civil Engineering, 57, 4, 425-447, 2011.
  • 9. P.W. Bridgman, Studies in large plastic flow and fracture, McGraw-Hill, New York 1952.
  • 10. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, Transactions of the ASME, 99, 1, 2-15, 1977.
  • 11. V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, 17, 4, 389-407, 1981.
  • 12. V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, 32, 1, 157-169, 1984.
  • 13. A. Needleman, V. Tvergaard, An analysis of the ductile rupture in notched bars, Journal of the Mechanics and Physics of Solids, 32, 6, 461-490, 1984.
  • 14. PN-EN 1993-1-10:2007 Eurocode 3: Design of Steel Structures - Part 1-10: Material Toughness and Through-thickness Properties.
  • 15. G. Sedlacek, M. Feldmann, B. Kühn, D. Tschickardt, S. Höhler, C. Müller, W. Hensen, N. Stranghöner, W. Dahl, P. Langenberg, S. Münstermann, J. Brozetti, J. Raoul, R. Pope, F. Bijlaard, Commentary and Worked Examples to EN 1993-1-10 “Material toughness and through thickness properties“ and other toughness oriented rules in EN 1993, JRC Scientific and Technical Reports, European Commission Joint Research Centre, 2008.
  • 16. P.G. Kossakowski, An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure, Archives of Civil and Mechanical Engineering, 10, 2, 15-39, 2010.
  • 17. P.G. Kossakowski, W. Trąmpczyński, Numerical simulation of S235JR steel failure with consideration of the influence of microstructural damages [in Polish], Przegląd Mechaniczny, 4, 15-22, 2011.
  • 18. P.G. Kossakowski, Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales, Journal of Theoretical and Applied Mechanics, 50, 2, 589-607, 2012.
  • 19. P. Kossakowski, Simulation of the plastic range of structural steel performance under the complex stress based on the Gurson-Tvergaard-Needleman model, [in Polish], Przegląd Budowlany, 3, 43-49, 2012.
  • 20. P.G. Kossakowski, Influence of initial porosity on strength properties of S235JR steel at low stress triaxiality, Archives of Civil Engineering, 58, 3, 293-308, 2012.
  • 21. A.G. Franklin, Comparison between a quantitative microscope and chemical method for assessment on non-metallic inclusions, Journal of the Iron and Steel Institute, 207, 181-186, 1969.
  • 22. PN-EN 10025-1:2005 Hot Rolled Products of Structural Steels - Part 1: General Technical Delivery Conditions.
  • 23. PN-EN 10002-1:2004 Metallic Materials - Tensile Testing - Part 1: Method of Test at Ambient Temperature.
  • 24. J. Faleskog, X. Gao, C.F. Shih, Cell model for nonlinear fracture analysis - I. Micromechanics calibration, International Journal of Fracture, 89, 4, 355-373, 1998.
  • 25. Abaqus 6.10 Analysis User’s Manual, Dassault Systèmes, Providence 2010.
  • 26. L. Xia, C.F. Shih, Ductile crack growth - I. A numerical study using computational cells with microstructurally-based length scales, Journal of the Mechanics and Physics of Solids, 43, 2, 233-259, 1995.
  • 27. L. Xia, C.F. Shih, Ductile crack growth - II. Void nucleation and geometry effects on macroscopic fracture behavior, Journal of the Mechanics and Physics of Solids, 43, 12, 1953-1981, 1995.
  • 28. X. Gao, J. Faleskog, C.F. Shih, Cell model for nonlinear fracture analysis - II. Fracture-process calibration and verification, International Journal of Fracture, 89, 4, 375-398, 1998.
  • 29. A.M. Kanvinde, G.G. Deierlein, The Void Growth Model and the Stress Modified Critical Strain Model to predict ductile fracture in structural steels, Journal of Structural Engineering, 132, 12, 1907-1918, 2006.
  • 30. J.W. Hancock, A.C. Mackenzie, On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states, Journal of Mechanics and Physics of Solids, 24, 2-3, 147-160, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0015-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.