Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the application of the eXtended Finite Element Method (XFEM) to simulations of discrete macro-cracks in plain concrete specimens under tension, bending and shear. Fundamental relationships and basic discrete constitutive laws were described. The most important aspects of the numerical implementation were discussed. Advantages and disadvantages of the method were outlined.
Czasopismo
Rocznik
Tom
Strony
409--431
Opis fizyczny
Bibliogr. 33 poz., il.
Twórcy
autor
autor
- Gdańsk University of Technology, Civil Engineering and Environmental Engineering, Gdańsk, bobin@pg.gda.pl
Bibliografia
- 1. Z.P. Baˇzant, J. Planas, Fracture and size effect in concrete and other quasi-brittle materials. CRC Press LLC, Boca Raton, 1998.
- 2. G. Lillu, J.G.M. van Mier, 3D lattice type fracture model for concrete, Engineering Fracture Mechanics, 70(7-8), 927-941, 2003.
- 3. J. Tejchman, J. Bobiński, Continuous and discontinuous modeling of fracture in concrete using FEM. Springer, Berlin-Heidelberg (eds. W. Wu and R. I. Borja), 2012.
- 4. M. Ortiz, A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, International Journal for Numerical Methods in Engineering, 44(9), 1267-1282, 1999.
- 5. J.C. Galvez, J. Cervenka, D.A. Cendon, V. Saouma, A discrete crack approach to normal/shearcracking of concrete, Cement and Concrete Research, 32(10), 1567-1585, 2002.
- 6. F. Zhou, J.F. Molinari, Dynamic crack propagation with cohesive elements: a methodology to addressmesh dependency, International Journal for Numerical Methods in Engineering, 59(1), 1-24, 2004.
- 7. T. Belytschko, J. Fish, B.E. Englemann, A finite element method with embedded localization zones, Computer Methods in Applied Mechanics and Engineering, 70(1), 59-89, 1988.
- 8. M. Jirasek, Comparative study on finite element with embedded discontinuities, Computer Methods in Applied Mechanics and Engineering, 188(1-3), 307-330, 2000.
- 9. T. Belytschko, N. Möes, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements, International Journal for Numerical Methods in Engineering, 50(4), 993-1013, 2001.
- 10. A. Simone, L.J. Sluys, The use of displacement discontinuities in a rate-dependent medium, Computer Methods in Applied Mechanics, 193(27-29), 3015-3033, 2004.
- 11. J. Oliver, A.E. Huespe, P.J. Sanchez, A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM, Computer Methods in Applied Mechanics and Engineering, 195(37-40), 4732-4752, 2006.
- 12. J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications, Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314, 1996.
- 13. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45(5), 601-620, 1999.
- 14. N. Möes, T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46(1), 131-150, 1999.
- 15. C. Daux, N. Möes, J. Dolbow, N. Sukumar, T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method, International Journal for Numerical Methods in Engineering, 48(12), 1741-1760, 2000.
- 16. N. Sukumar, N. Möes, T. Belytschko, B. Moran, Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering, 48(11), 1549-1570, 2000.
- 17. G.N. Wells, L.J. Sluys, A new method for modelling cohesive cracks using finite elements, International Journal for Numerical Methods in Engineering, 50(12), 2667-2682, 2001.
- 18. N. Möes, T. Belytschko, Extended finite element method for cohesive crack growth, Engineering Fracture Mechanics. 69(7), 813-833, 2002.
- 19. G. Zi, T. Belytschko, New crack-tip elements for XFEM and applications to cohesive cracks, International Journal for Numerical Methods in Engineering, 57(15), 2221-2240, 2003.
- 20. J. Mergheim, E. Kuhl, P. Steinman, A finite element method for the computational modelling of cohesive cracks, International Journal for Numerical Methods in Engineering, 63(2), 276-289, 2005.
- 21. A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods in Applied Mechanics and Engineering, 193(33-35), 3523-3540, 2004.
- 22. J.-H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear zone propagation with phantom nodes, International Journal for Numerical Methods in Engineering, 67(6), 868-893, 2006.
- 23. T. Rabczuk, G. Zi, A. Gerstenberger, W.A. Wall, A new crack tip element for the phantom-node method with arbitrary cohesive cracks, International Journal for Numerical Methods in Engineering, 75(5), 577-599, 2008.
- 24. S. Mariani, U. Perego, Extended finite element method for quasi-brittle fracture, International Journal for Numerical Methods in Engineering, 58(1), 103-126, 2003.
- 25. J. Oliver, A.E. Huespe, E. Samaniego, E.W. Chaves, Continuum approach to the numerical simulation of material failure in concrete, International Journal for Numerical and Analytical Methods in Geomechanics, 28(7-8), 609-632, 2004.
- 26. J.V. Cox, An extended finite element method with analytical enrichment for cohesive crack modelling, International Journal for Numerical Methods in Engineering, 78(1), 48-83, 2009.
- 27. J.F. Unger, S. Eckardt, C. Konke, Modelling of cohesive crack growth in concrete structures with the extended finite element method, Computer Methods in Applied Mechanics and Engineering, 196(41-44), 4087-4100, 2007.
- 28. J.L. Asferg, P.N. Poulsen, L.O. Nielsen, A consistent partly cracked XFEM element for cohesive crack growth, International Journal for Numerical Methods in Engineering. 72(4), 464-485, 2007.
- 29. P. Dumstorff, Modellierung und numerische Simulation von Rissfortschritt in sproen und quasi-sproden Materialien auf Basis der Extended Finite Element Method. Ruhr-Universitat Bochum, 2006.
- 30. C. Le Bellego, J.F. Dube, G. Pijaudier-Cabot, B. Gerard, Calibration of nonlocal damage model from size effect tests, European Journal of Mechanics A/Solids, 22(1), 33-46, 2003.
- 31. A. Rodriguez-Ferran, I. Morata, A. Huerta, Numerical modelling of notched specimens, Proc. of the fifth World Congress on Computational Mechanics WCCM V, Vienna Austria, 2002.
- 32. L. Skarżyński, J. Tejchman, Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending, European Journal of Mechanics/A Solids, 29(4), 746-760, 2010.
- 33. M.B. Nooru-Mohamed, Mixed mode fracture of concrete: an experimental approach, PhD Thesis, Delft University of Technology, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0015-0019