PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ oparów metalicznych na spawanie łukowe, część 3: Modelowanie łuku spawalniczego – wyniki. Dymy spawalnicze

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The effects of metal vapour in arc welding, part 3: Modelling of welding arc – results. Welding fumes
Języki publikacji
PL
Abstrakty
PL
W tej części artykułu przedstawiono wyniki oraz przewidywania obliczeniowego modelowania łuków spawalniczych, a także wpływ oparów metalicznych na parametry łuku. Omówiono powstawanie pyłów wpływających na zdrowie spawacza. Podsumowanie artykułu może być przydatne do tworzenia oprogramowania procesora źródła do sterowania stabilnością łuku, funkcjami ułatwiającymi spawanie i korekty błędów spawacza (reklamowanych w Australii jako oprogramowanie urządzeń, myślących za spawacza).
EN
The results and predictions of computational modeling of welding arcs and influence of metal vapour on arc parameters are presented in this part. The production of welding fume affecting the health of welder also is discussed. A summary of the article can be useful for developing software for intelligent processor control welding arc stability, weld assist functions and correction of errors welder advertised in Australia as a software welders who think for a welder.
Rocznik
Strony
12--21
Opis fizyczny
Bibliogr. 54 poz., il.
Twórcy
autor
  • CSIRO Materials Science and Engineering, Australia
Bibliografia
  • [1] Tanaka M.. Lowke J. J.: Predictions of weld pool profiles using plasma physics, J. Phys, D: Appl. Phys.40 R I-24 (2007).
  • [2] Terasaki H., Tanaka M., Ushio M.: Effects of metal vapor on electron temperature in helium gas tungsten arcs: Metall. Mater. Trans. A 33 1183-8 (2002).
  • [3] Zielińska S., Musioł K., Dzierżęga K., Pellerin S., Vaiensi F., Izarra C., Briand F: Investigations of GMAW plasma by optical emission spectroscopy, Plasma Sources Sci. Technol. 16832-8(2007).
  • [4] Rouffet M. E., Wendt M., Goett G., Kozakov R., Schoepp H., Weltmann K. D., Uhrlandt D.: Spectroscopic investigation of the high-current phase of a pulsed GMAW.
  • [5] Valensi F., Pellerin S., Boutaghane A., Dzierżęga K., Zielińska S., Pellerin N., Briand F.: Plasma diagnostic in gas metal arc welding by optical emission spectroscopy, J. Phys. D: Appl. Phys. 43 434002 (2010).
  • [6] Zielińska S., Pellerin S., Valensi F., Dzierżęga K., Musioł K., de Izarra C., Briand F., Eur. Phys. J. Appl. Phys. 43 111-22 (2008).
  • [7] Goecke S. F., Metzke E., Spille-Kohoff A., Langula M.: ChopArc. MSG-Lichtbogenschweissen für den Ultraleichtbau, Stuttgart, Fraunhofer IRB Verlag (2005).
  • [8] Gonzalez J. J., Bouaziz M.: Razafinimana na M., Gleizes A.: The influence of iron vapour on an argon transferred arc, Plasma Sources Sci. Technol. 6 20-8 (1997).
  • [9] Farmer A. J. D., Haddad G. N., Cram L. E.: Temperature determinations in a free-burning arc: III Measurements with molten anodes, J. Phys. D: Appt. Phys. 19 1723-30 (1986)
  • [10] Smars E. A., Acinger K.: Material transport and temperature distribution in arc between melting aluminium electrodes, Document No 212-162-68, International Institute of Welding (1968).
  • [11] Schnick M., Fussel U., Hertel M., Haesster M., Spille-Kohoff A., Murphy A. B.: Modelling of gas-metal arc welding taking into account metal vapour, J. Phys. D: Appl. Phys. 43 434008(2010).
  • [12] Murphy A. B.: Thermal plasmas in gas mixtures, J. Phys. D: Appl. Phys. 34 R151-73 (2001).
  • [13] Gu L., Arntsberg A. E., Bakken J. A.: The influence of silicon vapour on the transport coefficients and the arc behaviour in an argon plasma, Proc. 10th Int. Symp. Plasma Chemistry ed. U. Ehlemann et al, paper 1.1-6, Bochum, Germany, 4-9 August 1991.
  • [14] Gu L., Jensen R., Arntsberg A.E., Bakken J. A.: Studyon silicon vapour contaminated argon arcs and the metal pools, Proc. 11th Int. Symp. Plasma Chemistry, (Loughborough, UK, 22-27 August 1993), ed. J.E. Harry s. 222-7(1993).
  • [15] Bakken J. A.: Modelling of fluid flow, heat transfer and diffusion in arcs, J. HighTemp. Chem. Process. 3677-88 (1994).
  • [16] Murphy A .B., Boulos M. l., Colombo V., Fauchais P., Ghedini E., Gleizes A., Mostaghimi J., Proulx P., Schram D. C.: Advanced thermal plasma modelling, High Temp. Mater. Process. 12 255-336 (2008).
  • [17] Cram L. E.: Statistical evaluation of radiative power losses from thermal plasmas due to spectral fines, J. Phys. D: Appl. Phys. 18401-11 (1985).
  • [18] IwaoT., Mori Y., Okubo M., Sakai T., Tashiro S., Tanaka M., Yumoto M.: Modelling of metal vapor in pulse TIG including influence of self-absorption J. Phys. D: Appl. Phys. 43 434010(2010).
  • [19] Tashiro S., Tanaka M., Nakata K., Iwao T., Koshiishi F., Suzuki K., Yamazaki K.; Plasma properties of helium gas tungsten arc with metal vapour, Sci. Technol. Weld. Join. 12 202-7 (2007).
  • [20] Schnick M.. Füssel U., Hertel M., Spille-Kohoff A., Murphy A. B.: Metal vapour causes a central minimumin arc temperature in gas-metal arc welding through increased radiative emission, J. Phys. D: Appl. Phys. 43 022001(2010).
  • [21] Menart J., Lin L.: Numerical study of a free burning argon arc with copper contamination from the anode, Plasma Chem. Plasma Process. 19 153-70 (1999).
  • [22] Zhao G. Y., Dassanayabe M.: Etemadi K.: Numerical simulation of a free-burning argon arc with copper evaporation from the anode, Plasma Chem. Plasma Process. 10 87-99 (1990).
  • [23] Lago F. Gonzalez J. J., Freton P., Gleizes A.: A numerical modelling of an electric arc and its interaction with the anode: I. The two-dimensional model, J. Phys. D: Appl. Phys. 37 883-97 (2004).
  • [24] Gonzalez J. J., Gleizes A., Proulx P., Boulos M.: Mathematical modelling of a free-burning arc in the presence of metal vapor, J, Appl. Phys. 74 3065-70 (1993).
  • [25] Yamamoto K., Tanaka M., Tashiro S., Nakata K.. Yamazaki K-.Yamamoto E.. Suzuki K., Murphy A. B.: Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Sci. Technol. Weld Join. 13 566-72 (2008).
  • [26] Yamamoto K.. Tanaka M., Tashiro S., Nakata K., Yamazaki K., Yamamoto E., Suzuki K., Murphy A. B.: Numerical simulation of metal vapor behavior in arc plasma. Surf. Coat. Technol. 202 5302-5 (2008).
  • [27] Haidar J.: The dynamic effects of metal vapour in gas metal arc welding. J. Phys. D: Appl. Phys. 43 165204(2010).
  • [28] Haidar J.: An analysis of heat transfer and fume production in gas metal arc welding. III, J. Appi. Phys. 85 3448-59 (1999).
  • [29] Gu L. Arntsberg A. E., Bakken J. A.: DC arc behaviour in mixtures of argon and metal (Si) vapour from a liquid metal anode, J. High Temp. Chem. Process. 1 (Suplement do nr. 3)350-7(1992).
  • [30] Voller V. R., Prakash C.: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transfer 30 1709-19 (1987).
  • [31] Haidar J,: An analysis of the formation of metal droplets in arc welding. J. Phys. D:Appl. Phys. 31 1233-44(1998).
  • [32] Wang F., Hou W. K.. Hu S. J., Kannatey-Asibu E., Schultz W. W.. Wang P. C.: Modelling and analysis of metal transfer in gas metal arc welding, J. Phys. D: Appl. Phys. 36 1143-52(2003).
  • [33] Fan H. G.. Kovacevic R.: A unified model of transport phenomena in gas metal arc welding including electrode. arc plasma and molten pool, J. Phys. D: Appl. Phys. 37 2531-44 (2004).
  • [34] Hu J., Tsai H. L.: Heat and mass transfer in gas metal arc welding: H. The metal, Int. J. Heat Mass Transf. 50 808-20 (2007).
  • [35] Hu J., Tsai H. L.: Heat and mass transfer in gas metal arc welding: l. The arc, Int. J. Heat Mass Transf. 50 833-16 (2007).
  • [36] Gleizes A., Gonzalez J. J., Freton P: Thermal plasma modelling. J. Phys. D: Appl. Phys. 38 R153-83 (2005).
  • [37] Yamamoto K., Tanaka M., Tashiro S.. Nakata K.. Murphy A. B.: Metal vapor behaviour in GTA welding of a stainless steel considering the Marangoni effect. IEEJ Trans. Electric. Electron. Eng. 4 497-503 (2009).
  • [38] Tanaka M., Yamamoto K., Tashiro S., Nakata K., Yamamoto E., Yamazaki K., Suzuki K., Murphy A. B., Lowke J. J.: Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding, J. Phys, D: Appl. Phys. 43 434009 (2010).
  • [39] Yamamoto K.. Tanaka M., Tashiro S.. Nakata K.. Yamamoto E., Yamazaki K., Suzuki K., Murphy A. B., Lowke J. J.: Numerical simulation of diffusion of multiple metal vapours in a TIG arc plasma for welding of stainless steel. Weld. World 53R166-70(2009).
  • [40] Etemadi K., Zhao G. Y., Mostaghimi J.: Impact of cathode evaporation on a free-burning arc. J. Phys. D: Appl. Phys. 22 1692-6(1989).
  • [41] Haidar J.: Local thermodynamic equilibrium in the cathode region of a free-burning arc in argon, J. Phys. D: Appl. Phys. 282494-504(1995).
  • [42] Gray C. N., Hewitt P. J., Dare P. R.M.: New approach would help control weld fumes at source: II. MIG fumes. Weld. Met. Fabr. 50393-7(1982).
  • [43] Deam R. T., Simpson S. W., Haidar J.: A semi-empirtcal model of the fume formation from gas metal arc welding, J. Phys. D: Appl. Phys. 33 1393-402 (2000).
  • [44] Dennis J. H., Hewitt P. J., Redding C. A. J., Workman A. D.: A model for prediction of fume formation rate in gas metal arc welding (GMAW). globular and spray modes. DC electrode positive, Ann. Occup. Hyg. 45 105-13(2001).
  • [45] Zimmer A. T. Baron P. A., Biswas P: The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process, J. Aerosol Sci. 33 519-31 (2002).
  • [46] Hewitt P. J., Hirst A.A.: Development and validation of a model to predict the metallic composition of flux cored arc welding fumes, Ann. Occup. Hyg. 35 223-32 (1991).
  • [47] Jenkins N. T., Eagar T. W.: Fume formation from spatter oxidation during arc welding, Sci. Technol. Weld. Join. 10 537-43 (2005).
  • [48] Antonini J. M.: Health effects of welding, Crit. Rev. Toxicol. 3361-103(2003).
  • [49] Hewitt P. J.: Occupational health in metal arc welding, Indoor Built Environ. 5 253-62 (1996).
  • [50] Dennis J. H., French M. J., Hewitt P. J., Mortazavi S. B., Redding C. A. J.: Control of exposure to hexavalent chromium and ozone in gas metal arc welding of stainless steels by use of a secondary shield gas, Ann. Occup. Hyg. 46 43-8 (2002).
  • [51] Ioffe l., MacLean D., Perelman N., Stares L. Thornton M.: Fume formation rate at globular to spray mode transition during welding, J. Phys. D: Appl. Phys. 28 2473-7 (1995).
  • [52] Tashiro S.. Zeniya T., Yamamoto K., Tanaka M.. Nakata K., Murphy A. B., Yamamoto E., Yamazaki K., Suzuki K.: Numerical analysis of fume formation mechanism in arc, J. Phys. D: Appl. Phys. 43 434012 (2010).
  • [53] Windeler R. S., Lehtinen K. E. J., Friedlander S. K.: Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet: II. Particle size and neck formation-comparison with theory. Aerosol Sci. Technol. 27 191-205 (1997).
  • [54] Pentegov I.V.,Pismiennyj A.S., Petrienko O. l.: Obliczanie parametrów zmechanizowanego spawania stali w osłonie gazów Nr 7/2010 s. 33-38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0013-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.