PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of asphalt creep compliance using artificial neural networks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Creep compliance of the hot-mix asphalt (HMA) is a primary input of the current pavement thermal cracking prediction model used in the US. This paper discusses a process of training an Artificial Neural Network (ANN) to correlate the creep compliance values obtained from the Indirect Tension (IDT) with similar values obtained on small HMA beams from the Bending Beam Rheometer (BBR). In addition, ANNs are also trained to predict HMA creep compliance from the creep compliance of asphalt binder and vice versa using the BBR setup. All trained ANNs exhibited a very high correlation of 97 to 99 percent between predicted and measured values. The binder creep compliance functions built on the ANN-predicted discrete values also exhibited a good correlation when compared with the laboratory experiments. However, the simulation of trained ANNs on the independent dataset produced a significant deviation from the measured values which was most likely caused by the differences in material composition, such as aggregate type and gradation, presence of recycled additives, and binder type.
Twórcy
autor
autor
  • Department of Civil and Environmental Engineering, University of Connecticut, USA
Bibliografia
  • 1. S. Haykin, Neural networks and learning machines, Prentice Hall, New York, NY 1999.
  • 2. I. Flood, N. Kartam, Neural networks in civil engineering. I: Principles and understanding. Journal of Computing in Civil Engineering, 8, 131-48, 1994a.
  • 3. I. Flood, N. Kartam, Neural networks in civil engineering. II: Systems and application. Journal of Computing in Civil Engineering, 8, 149-62, 1994b.
  • 4. M. Dougherty, A review of neural networks applied to transport. Transportation Research Part C: Emerging Technologies, 3, 247-60, 1995.
  • 5. N.O. Attoh-Okine, S. Mensah, Potential applications of system identification techniques in pavement performance modeling. Proceedings of the Second International Symposium on Maintenance and Rehabilitation of Pavements and Technological Control, National Center for Asphalt Technology, Auburn, Alabama, 2001.
  • 6. S. Chou, T.K. Pellinen, Assessment of construction smoothness specification pay factor limits using artificial neural network modeling. Journal of Transportation Engineering, 131, 563-70, 2005.
  • 7. R.A. Tarefder, L. White, M. Zaman, Development and application of a rut prediction model for flexible pavement. Transportation Research Record 1936, 201-9, 2005a.
  • 8. R.A. Tarefder, L. White, M. Zaman, Neural network model for asphalt concrete permeability. Journal of Materials in Civil Engineering, 17, 19-27, 2005b.
  • 9. H. Ceylan, A. Guclu, E. Tutumluer, M.R. Thompson, Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior. International Journal of Pavement Engineering, 6, 171-82, 2005.
  • 10. A. Molenaar, A. Meerkerk, M. Miradi, T. van der Steen, Performance of porous asphalt concrete. Journal of the Association of Asphalt Paving Technologists, 75, 1053-94, 2006.
  • 11. C. Huang, Y.M. Najjar, S.A. Romanoschi, Predicting asphalt concrete fatigue life using artificial neural network approach. Paper No. 07-1607, 86th Transportation Research Board Annual Meeting (CD-ROM), Transportation Research Board, National Research Council, Washington, DC. 2007.
  • 12. M. Zeghal, Thermal cracking prediction using artificial neural network. In Al-Qadi, Scarpas & Loizos (Ed.), Pavement Cracking, Taylor and Francis Group, 379-86, 2008a.
  • 13. M. Zeghal, Modeling the creep compliance of asphalt concrete using the artificial neural network technique. Proceedings of the Annual Congress of the Geo-Institute of ASCE (GeoCongress 2008), New Orleans, LA, 1-7, 2008b.
  • 14. A.T. LaCroix, Y.R. Kim, S.R. Ranjithan, Backcalculation of dynamic modulus from resilient modulus of asphalt concrete with an artificial neural network. Transportation Research Record: Journal of Transportation Research Board, 2057, 107-13, 2008.
  • 15. H. Ceylan, K. Gopalakrishnan, M.B. Bayrakc, Neural networks based concrete airfield pavement layer moduli backcalculation. Civil Engineering and Environmental Systems, 25, 185-99, 2008.
  • 16. F. Xiao, S.N. Amirkhanian, Artificial neural network approach to estimating stiffness behavior of rubberized asphalt concrete containing reclaimed asphalt pavement. Journal of Transportation, 135, 8, 580-9, 2009.
  • 17. J.P. Hallin, et al., Development of the 2002 guide for the design of new and rehabilitated pavement structures: Phase II. Report for National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC., 2004.
  • 18. R. Roque, W.G. Buttlar, The development of a measurement and analysis system to accurately determine asphalt concrete properties using the Indirect Tensile mode. Journal of the Association of Asphalt Paving Technologists, 61, 304-28, 1992.
  • 19. H. Bahia, D.A. Anderson, D. Christensen, The Bending Beam Rheometer; a simple device for measuring low-temperature rheology of asphalt binders. Journal of Association of Asphalt Paving Technologists, 61, 117-53, 1992.
  • 20. A. Zofka, M. Marasteanu, X. Li, T. Clyne, J. McGraw, Simple method to obtain asphalt binders low temperature properties from asphalt mixtures properties. Journal of the Association of Asphalt Paving Technologists, 80, 255-82, 2005.
  • 21. A. Zofka, I. Yut, Alternative procedure for determination of hot mix asphalt creep compliance. ASTM Journal of Testing and Evaluation, 39, 1, 1-11, 2011.
  • 22. A. Zofka, Investigation of asphalt concrete creep behavior using 3-point bending test. Ph.D. dissertation, University of Minnesota, Minneapolis, MN, 2007.
  • 23. A. Zofka, M. Marasteanu, M. Turos, Determination of asphalt mixture creep compliance at low temperatures using thin beam specimens. Transportation Research Record 2057, 134-9, 2008a.
  • 24. A. Zofka, M. Marasteanu, M. Turos, Investigation of asphalt mixture creep compliance at low temperatures. Journal of Road Materials and Pavement Design, 9, 269-286, 2008b.
  • 25. H. Demuth, M. Beale, M. Hagan, Neural network toolbox 5 user’s guide. The MathWorks, Inc., Natick, MA, 2007.
  • 26. J.E. Moody, The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. Advances in neural information processing systems 4, Morgan Kaufman Publishers, San Mateo, CA, 1992.
  • 27. R.D. Reed, R.J. Marks, Neural smithing: supervised learning in feedforward artificial neural networks, The MIT Press, Cambridge, MA, 1992.
  • 28. W. Zhang, A. Drescher, D.E. Newcomb, Viscoelastic analysis of diametral compression of asphalt concrete. Journal of Engineering Mechanics, 123, 6, 596-603, 1997.
  • 29. D. Christensen, Analysis of creep data from Indirect Tension test on asphalt concrete. Journal of the Association of Asphalt Paving Technologists, 67, 458-77, 1998.
  • 30. AASHTO Standard T 322-03, Determining the creep compliance and strength of hot-mix asphalt (HMA) using the Indirect Tensile test device. Standard Specifications for Transportation Materials and Methods of Sampling and Testing, AASHTO, Washington, DC, 2005a.
  • 31. AASHTO Standard T313-05, Standard method of test for determining the flexural creep stiffness of asphalt binder using the Bending Beam Rheometer (BBR), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, AASHTO, Washington, DC, 2005b.
  • 32. J.M. Gere, S.P. Timoshenko, Mechanics of materials, Third Edition, PWS-KENT Publishing Company, Boston, MA, 1990.
  • 33. AASHTO Standard T240-03, Standard method of test for effect of heat and air on a moving film of asphalt (Rolling Thin-Film Oven Test), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, AASHTO, Washington, DC, 2005c.
  • 34. W. Sarle, Neural Networks: Frequently Asked Questions. Retrieved December 1, 2011, from ftp://ftp.sas.com/pub/neural/FAQ.html, 1997.
  • 35. AASHTO Standard PP, Practice for accelerated aging of asphalt binder using Pressurized Aging Vessel (PAV), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, AASHTO, Washington, DC, 1998.
  • 36. M. Marasteanu, et al., Investigation of low temperature cracking in asphalt pavements – National Pooled Fund Study 776. Report MN/RC 2007-43, Minnesota Department of Transportation, St. Paul, MN, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0011-0074
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.