PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element model updating of reinforced concrete beams with honeycomb damage

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of detecting honeycombing damage in a reinforced concrete beam using the finite element model updating technique was proposed. A control beam and two finite element models representing different severity of damage were constructed using available software and the defect parameters were updated. Analyses were performed on the finite element models to approximate the modal parameters. A datum and a control finite element model to match the datum test beams with honeycombs were prepared. Results from the finite element model were corrected by updating the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There was no significant loss of stiffness by doubling the volume of the honeycombs.
Twórcy
autor
  • Civil Engineering Department, University of Malaya Lembah Pantai, Kuala Lumpur, Malaysia
Bibliografia
  • 1. A. Bagchi, E. Murison, A.A. Mufti, A.S. Noman, Evaluation of a rugged FBG strain sensor system for monitoring RC structures, Experimental Techniques, DOI:10.1111/j.1747-1567.2009.00526.x, 2009.
  • 2. E. Caetano, S. Silva, J. Bateira, A vision system for vibration monitoring of civil engineering structures, Experimental Techniques, 32, 6, 54-57, 2008.
  • 3. S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, Rep. LA-13070-MS, Los Alamos Nat Lab, Los Alamos, N.M. 1996.
  • 4. M. M. Fayyadh, H.A. Razak, Z. Ismail, Combined modal parameters-based algorithm for damage identification in a beamlike structure: theoretical development and verification, Archives of Civil and Mechanical Engineering, 11, 3, 587-609, 2012.
  • 5. Z. Ismail, Application of residuals from regression of experimental mode shapes to locate multiple crack damage in a simply supported reinforced concrete beam, Measurement, 45, 6, 1455-1461, 2012.
  • 6. Z. Ismail, H.A. Razak, A.G.A. Rahman, Determination of damage location in RC beams using mode shape derivatives, Engineering Structures, 28, 11, 1566-1573, 2006.
  • 7. Z. Ismail, Z. Ibrahim, A.Z.C. Ong, A.G.A. Rahman, An approach to reduce the limitations of modal identification in damage detection using limited field data for non-destructive SHM of a cable-stayed concrete bridge, Journal of. Bridge Engineering, doi:10.1061/(ASCE)BE.1943-5592.0000353, 2012.
  • 8. Z. Ismail, H. Khov, W.L. Li, Determination of material properties of orthotropic plates with general boundary conditions using Inverse Method and Fourier Series, Measurement, Under review, 2012.
  • 9. Z. Ismail, A.Z.C. Ong, Honeycomb damage detection in a reinforced concrete beam using frequency mode shape regression, Measurement, 45, 5, 950-959, 2012.
  • 10. A.G.A. Rahman, A.Z.C. Ong, Z. Ismail, Effectiveness of impact-synchronous time averaging in determination of dynamic characteristics of a rotor dynamic system, Measurement, 4, 1, 34-45, 2011.
  • 11. A.G.A. Rahman, A.Z.C. Ong, Z. Ismail, Crack identification on rotor shaft using experimental modal data, Experimental Techniques, doi: 10.1111/j.1747-1567.2012.00823.x, 2012.
  • 12. P. Reynolds, Dynamic testing and monitoring of civil engineering structures, Experimental Techniques, DOI: 10.1111/j.1747-1567.2008.00422.x, 2008.
  • 13. S. Bhalla, S. Tuli, R. Arora, Defect detection in concrete structures using thermal imaging techniques, Experimental Techniques, DOI:10.1111/j.1747-1567.2010.00658.x, 2010.
  • 14. I.S. Khezel, The effect of Honeycombing on Modal Response of Reinforced Concrete Beams, MEngSc Thesis, Civil Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur, 2002.
  • 15. W. Omar, L.A. Clarke, The effect of Honeycombing on Shear Capacity of Beams, Proc. 6. Int. Conf. on Concrete Engineering and Technology (CONCET 99), Kuala Lumpur, Malaysia, 1999.
  • 16. J.M. Caicedo, Practical guidelines for the natural excitation technique (NexT) and the eigensystem realization algorithm(ERA) for modal identification using ambient vibration, Experimental Techniques, 33, 2, 65-75, 2010.
  • 17. G.N. Devi, K. Subramanian, A.R. Santhakumar, Experimental investigations on RC lateral load resisting systems under lateral loads, Experimental Techniques, DOI:10.1111/j.1747-1567.2010.00634.x, 2010.
  • 18. S.-E. Fang, R. Perera, G. de Roeck, Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization, J Sound and Vibration, 313, 3-5, 544-559, 2008.
  • 19. A. Bayraktar, B. Sevim, A.C. Altunişik, T. Türker, Analytical and operational modal analyses of Turkish style RC minarets for structural identification, Experimental Techniques, 34, 2, 49-53, 2010.
  • 20. J.F. Gauthier, T.M. Whalen, J. Liu, Experimental validation of the higher-order derivative discontinuity method for damage identification, J. Structural Control and Health Monitoring, 15, 43-61, 2008.
  • 21. T.M. Whalen, The behavior of higher order mode shape derivatives in damaged, beam-like structures, J. Sound and Vibration, 309, 426-464, 2008.
  • 22. T.M. Whalen, J. Liu, J.F. Gauthier, Application of the higher order derivative discontinuity method to the I-40 bridge damage detection problem, Proc. 4. World Conf. on Structural Control and Monitoring, San Diego, CA, USA, 2006.
  • 23. M.O. Abdalla, K.M. Grigoriadis, D.C. Zimmerman, Structural Damage Detection Using Linear Matrix Inequality Methods, J. Vibration and Acoustics, 122, 4, 448-455, 2000.
  • 24. J.T.P. Castro, R.D. Vieira, R.A. Sousa, M.A. Meggiolaro, J.L.F. Freire, Dead load evaluation in RC columns using released strain measurements, Experimental Techniques, DOI: 10.1111/j.1747-1567.2009.00605.x, 2009.
  • 25. J.T.S. Wang, C.C. Lin, Dynamic analysis of generally supported beams using Fourier series, J Sound and Vibration, 196, 285-293, 1996.
  • 26. W.L. Li, Free vibrations of beams with general boundary conditions, J Sound and Vibration, 237, 4, 709-205, 2000.
  • 27. P. Ruta, Application of Chebyshev’s series to solution of non-prismatic beam vibration problem, J Sound and Vibration, 227, 449-467, 1999.
  • 28. P. Ruta, The application of Chebyshev’s polyminials to the solution of non-prismatic Timoshenko beam vibration problem, J Sound and Vibration, 296, 1-2, 243-263, 2006.
  • 29. H. Grandin Jr, Fundamentals of the Finite Element method, Macmillan, NY, 1986.
  • 30. TNO, DIANA Finite Element Analysis, User’s Manual – Release 9.2, 2007.
  • 31. P.L. Walter, Validating the data before the structural model, Experimental Techniques, 30, 6, 56-59, 2006.
  • 32. M.I. Friswell, J.E. Mottershead, Finite element model updating in structural dynamics, Dordrecht: Kluwer Academic Publishers, London, 1995.
  • 33. G. Chen, D.J. Ewins, Verification of Finite Element Models for Model Updating, Proc. 19. Int. Modal Analysis Conf., Orlando, Florida, USA, 2001.
  • 34. M. Link, Updating of Analytical Models Review of Numerical Procedures and Application Aspects, Proc. Structural Dynamics Forum SD2000, Los Alamos, New Mexico, USA, 2000.
  • 35. N. Niedbal, F. Klusowski, W. Luber, Updating of Finite Element Model by Means of Normal Mode Parameters, Proc. 13. Int. Seminar on Modal Analysis, K U Leuven, Belgium, 1988.
  • 36. H. Berger, J.P. Chaquin, R. Ohayon, Finite Element Model Adjustment using Experimental Modal Data, Proc. 2. Int. Modal Analysis Conf., USA, 638-642, 1984.
  • 37. R.M. Lin, D.J. Ewins, Model Updating using FRF Data, Proc. 15. Int. Seminar on Modal Analysis, K U Leuven, Belgium, 141-162, 1990.
  • 38. A. Teughels, J. Maeck, G. de Roeck, Damage Assessment by FE Model Updating using Damage Functions, Computers and Structures, 80, 1869-1879, 2002.
  • 39. N.D. Biswa, Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems, Mechanical Systems and Signal Processing, 16, 1, 83-96, 2001.
  • 40. B. Jaishi, W.X. Ren, Finite element model updating based on eigenvalue and strain energy residuals using multi-objective optimization technique, Mechanical Systems and Signal Processing, 21, 2295-2317, 2007.
  • 41. P.G. Bakir, E. Reynders, G. de Roeck, Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm, J Sound and Vibration, 305, 1-2, 211-225, 2007.
  • 42. M.M. Gola, A. Somae, D. Botto, On theoretical limits of dynamic model updating using a sensitivitybased approach, J Sound and Vibration, 244, 4, 583-595, 2001.
  • 43. S. Kanev, F. Weber, M. Verhaegen, Experimental validation of a finite-element model updating procedure, J Sound and Vibration, 300, 1, 394-413, 2007.
  • 44. M. Sanayei, E.S. Bell, C.N. Javdekar, J.L. Edelmann, E. Slavsky, Damage Localization and Finite-Element Model Updating Using Multi-response NDT Data, J Bridge Engineering, 11, 6, 688-698, 2006.
  • 45. M. Link, L. Zhang, Experience with different Procedures for Updating Structural Parameters of Analytical Models using Test Data, Proc. 10. Int. Modal Analysis Conf., San Diego, New York, USA, 1992.
  • 46. X.H. He, Z.W. Yu, Z.Q. Chen, Finite element model updating of existing steel bridge based on structural health monitoring, J Central South University of Technology, 15, 3, 399-403, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0011-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.