PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ oparów metalicznych na spawanie łukowe, cz. 2: Obliczanie

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The effects of metal vapour in arc welding, part 2: Calculation
Języki publikacji
PL
Abstrakty
PL
W części 2 artykułu omówiono sposoby modelowania i obliczania parametrów łuku spawalniczego w metodach TIG i MIG/MAG. Przedstawiono również metodykę prowadzenia obliczeń właściwości termodynamicznych, współczynników przenoszenia i współczynników dyfuzji.
EN
This part is concerned with computational modeling of welding arcs and the influence of metal vapour. Methods used in modeling, including equations, transport properties, treatment of metal vapour diffusion, radiative emission coefficients and vaporization rates are presented.
Rocznik
Strony
29--43
Opis fizyczny
Bibliogr. 96 poz., il.
Twórcy
autor
  • CSIRO Materials Science and Engineering, Australia
Bibliografia
  • [1] Murphy A. B., Tanaka M., Tashiro S., Sato T., Lowke J. J.: A computationat investigation of the effectiveness of different shielding gas mixtures for arc welding, J. Phys. D: Appl. Phys. 42 115205(2009).
  • [2] Nielsen T., Kaddani A., Zahrai S.: Modelling evaporating metal droplets in ablation controlled electric arcs, J. Phys. D: Appl. Phys. 34 2022-31 (2001).
  • [3] Yang F., Rong M., Wu Y., Murphy A. B., Pei J.. Wang L., Liu Z., Liu Y: Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker, J. Phys. D: Appl. Phys. 43 434011 (2010).
  • [4] Rat V., Murphy A. B., Aubreton J., Elchinger M-F., Fauchais P: Treatment of non-equilibrium phenomena in thermal plasma flows, J. Phys. D: Appl. Phys. 41 183001 (2008).
  • [5] Schnick M., Fssel U., Hertel M., Haessler M., Spille-Kohoff A., Murphy A. B.: Modelling of gas-metal arc welding taking into account metal vapour, J. Phys. D: Appl. Phys. 43 434008 (2010).
  • [6] Murphy A. B.: Thermal plasmas in gas mixtures, J. Phys. D: Appl. Phys. 34 R151-73 (2001).
  • [7] Chen X.: Persona! communication (2005).
  • [8] Patankar S. V.: Numerical Heat Transfer and Fluid Flow, Washington. DC: Hemisphere (1980).
  • [9] Boulos M I., Fauchais P., Pfender E.: Thermal Plasmas: Fundamentals and Applications, vol. l. New York: Plenum. (1994).
  • [10] Chase M. W. Jr., Davies C. A., Downey J. R. Jr, Frurip D. J., McDonald R. A., Syverud A. N.: JANAF Thermochemical Tables 3rd edn., J. Phys. Chem. Ref. Data 14 Suppl. 1(1985).
  • [11] Hirschfelder J. O., Curtiss C. F., Bird R. B.: Molecular Theory of Gases and Liquids 2nd edn.. New York: Wiley (1964).
  • [12] Murphy A. B., Arundell C. J.: Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas, Plasma Chem. Plasma. Process. 14 451-90 (1994).
  • [13] Colombo V., Ghedini E., Sanibondi P.: Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas, Prog. Nuci. Energy 50 921-33 (2008),
  • [14] Murphy A. B.: Transport coefficients of air. argon-air, nitrogen-air, and oxygen-air plasmas, Plasma Chem. Plasma Process. 15279-307(1995).
  • [15] Capitelli M., Colonna G., Gorse C., D'Angola A.: Transport properties of high temperature air in local thermodynamic equilibrium, Eur. Phys. J.D 11 279-89 (2000).
  • [16] Murphy A. B.: Transport coefficients of helium and argon-helium plasmas, IEEE Trans. Plasma Sci. 25809-14(1997).
  • [17] Murphy A. B.: Transport coefficients of hydrogen and argon-hydrogen plasmas, Plasma Chem. Plasma Process. 20 279-97 (2000).
  • [18] Colombo V., Ghedini E., Sanibondi P: Two-temperature thermodynamic and transport properties of argon-hydrogen and nitrogen-hydrogen plasmas, J. Phys. D: Appl. Phys. 42 055213(2009).
  • [19] Aubreton A., Elchinger M. F.: Transport properties in non-equilibrium argon, copper and argon-copper thermal plasmas, J.Phys. D: Appl. Phys. 36 1798-805 (2003)
  • [20] Andr P., Bussire W., Rochette D.: Transport coefficients of Ag-SiO2 plasmas, Plasma Chem. Plasma Process. 27 381-403 (2007).
  • [21] Hulburt H. M., Hirschfelder J. O.: Potential energy functions for diatomic molecules, J. Chem. Phys. 9 61-9 (1941).
  • [22] Hulburt H. M., Hirschfelder J. O.: Correction, J. Chem. Phys. 35 1901 (1961).
  • [23] Rainwater J. C., Holland P. M., Biolsi L.: Binary collision dynamics and numerical evaluation of dilute gas-transport properties for potentials with multiple extrema, J. Chem. Phys. 77434-47(1982).
  • [24] Mostaghimi-Tehrani J., Pfender E.: Effects of metal vapor on the properties of an argon arc plasma, Plasma Chem. Plasma Process. 4 129-39 (1984).
  • [25] Murphy A. B.: A comparison of treatments of diffusion in thermal plasmas, J. Phys. D: Appl. Phys. 29 1922-32 (1996)
  • [26] Cressault Y, Gleizes A.: Thermodynamic properties and transport coefficients in Ar - H2 Cu plasmas, J. Phys. D: Appl. Phys. 37 560-72 (2004).
  • [27] Hoffmann T., Baldea G., Riedel U.: Thermodynamics and transport properties of metal/inert-gas mixtures used for arc welding. Proc. Combust. Inst. 32 3207-14 (2009).
  • [28] Rapp D., Francis W. E.: Charge exchange between gaseous atoms and ions, J. Chem. Phys. 37 2631-45 (1962).
  • [29] Cressault Y., Hannachi R.,Teulet P., Gleizes A., Gonnet J-P., Battandier J-Y.: Influence of metallic vapours on the proper-ties of air thermal plasmas, Plasma Sources Sci. Technol. 17035016(2008).
  • [30] Dunn G. J., Eagar T. W.: Metal vapors in gas tungsten arcs: II. Theoretical calcuiations of transport properties, Metall. Trans.A17 1865-71 (1986).
  • [31] Gu L., Arntsberg A. E., Bakken J. A.: The influence of silicon vapour on the transport coefficients and the arc behaviour in an argon plasma, Proc. 10th Int. Symp. Plasma Chemistry ed U Ehlemann et al paper 1.1-6, Bochum, Germany, 4-9 August 1991.
  • [32] Abdelhakim H., Dinguirard j. P., Vacquie S.: The influence of copper vapour on the transport coefficients in a nitrogen arc plasma, J. Phys. D: Appl. Phys. 13 1427-38(1980).
  • [33] Dassanayake M. S., Etemadi K.: Thermodynamic and transport properties of an aluminium-nitrogen plasma mixture, J. Appl. Phys. 66 5240-4 (1989).
  • [34] Cherny G. G., Losev S. A., Macheret S. O., Potapkin B.: Physical and Chemical Processes in Gas Dynamics: Cross Sections and Rate Constants vol. l, Reston, VA; AIAA (2002).
  • [35] Witko M., Beckmann H. O.: Ab initio MRD Cl calcuiations for ground and excited-states of Cu2 molecule, Mol. Phys. 47 945-57(1982).
  • [36] Chervy B., Dupont O., Gleizes A., Kenek P.: The influence of the cross section the electron-copper atom collision on the electrical conductivity of Ar-Cu and SF6-Cu plasmas, J. Phys. D: Appl. Phys. 28 2060-6 (1995).
  • [37] Scheibner K. F., Hazi A. U., Henry R. J.: 15th Int. Conf. Physics of Electronic and Atomic Collisions (Brighton, UK) ed. J. Geddes et al. (Amsterdam: North-Holland) (1987).
  • [38] Trajmar S., Williams W., Srivastava S. K.: Electron impact cross-sections for Cu atoms, J. Phys. B: At. Mol. Phys. 10 3323-33(1977).
  • [39] Scheibner K. F., Hazi A. U., Henry R. J. W.: Electron-impact excitation cross sections for transitions in atomic copper, Phys. Rev. A 35 4869-72 (1987).
  • [40] Devoto R.S.: Transport properties of ionized monatomic gases, Phys. Fluids 9 1230-40 (1966).
  • [41] Murphy A. B.: Diffusion in equilibrium mixtures of ionized gases Phys. Rev. E 48 3594-603 (1993).
  • [42] Murphy A. B. Treatments of diffusion in thermal plasmas High. Temp. Mater. Process. 4 1-20 (2000).
  • [43] Murphy A. B.: Combined diffusion coefficients in equilibrium mixtures of dissociating gases, J. Chem. Phys. 99 1340-3 (1993).
  • [44] Murphy A. B.: Erratum. Diffusion in equilibrium mixtures of ionized gases [Phys. Rev. E 48, 3594 (1993)], Phys. Rev. E 50 5145-6 (1994).
  • [45] Zhang J. L., Yan J. D., Murphy A .B., Hali M., Fang M. T. C.: Computational investigation of arc behavior in an auto-expansion circuit breaker contaminated by ablated nozzle vapour, IEEE Trans. Plasma Sci. 30 706-19 (2002).
  • [46] Cressault Y., Gleizes A.: Calculation of diffusion coefficients in air-metal thermal plasmas, J. Phys. D: Appl. Phys. 43 434006(2010).
  • [47] Rat V., Aubreton J., Elchinger M. F., Fauchais P., Murphy A. B.: Diffusion in two-temperature thermal plasmas, Phys. Rev. E 66 056407 (2002).
  • [48] Murphy A. B.: Cataphoresis in electric arcs, J. Phys. D: Appl. Phys. 31 3383-90(1998).
  • [49] Wilke C. R.: A viscosity equation for gas mixtures, J. Chem. Phys. 18517-9(1950).
  • [50] Cressault Y., Teulet P., Gleizes A.: Thermal plasma properties in gas or gas-vapour mixtures, Proc. 17th Int. Conf. on Gas Discharges and their Applications (Cardiff, UK, 7-12 September 2008) ed. J. E. Jones (Cardiff: GD2008 Local Organizing Committee) str. 149-52 (2008).
  • [51] Gu L., Jensen R., Arntsberg A. E., Bakken J. A.: Study on silicon vapour contaminated argon arcs and the metal pools, Proc. 11th Int. Symp. Plasma Chemistry (Loughborough, UK, 22-27 August 1993) ed. J- E. Harty str. 222-7(1993).
  • [52] Bakken J. A.: Modelling of fluid flow, heat transfer and diffusion in arcs, J. High Temp. Chem. Process. 3 677-88 (1994).
  • [53] Gu L., Bakken J. A.: Mass, heat and momentum transfer at the plasma-metal pool interphase in a plasma arc reactor, Heat and Mass Transfer under Plasma Conditions, Proc. Int. Symp. (Cesme, Turkey, 1994) ed. P. Fauchais et al (New York: Begell House) str. 289-97 (1955).
  • [54] Ma Q., Rong M., Murphy A. B., Wu Y., Xu T., Yang F: Simulation and experimental study of arc motion in a low-voltage circuit breaker considering wall ablation, IEICE Trans. Electron. E91-C 1240-8 (2008).
  • [55] Lowke J. J.: Predictions of arc temperature profiles using approximate emission coefficients for radiation losses, J. Quant. Spectrosc. Radiat. Transfer 14 111-22 (1974).
  • [56] Murphy A .B., Boulos M. l., Colombo V., Fauchais P., Ghedini E., Gleizes A., Mostaghimi J., Proulx P., Schram D. C.: Advanced thermal plasma modelling, High Temp. Mater. Process. 12 255-336 (2008).
  • [57] Raynai G., Vergne P. J., Gleizes A.: Radiative transfer in SF6 and SF6-Cu arcs, J. Phys. D: Appl. Phys. 28 508-15 (1955).
  • [58] Liebermann R.W., Lowke J. J.: Radiation emission coefficients for sulfur hexafluoride arc plasmas. J. Quant. Spectrosc. Radiat. Transfer 16 253-64 (1976).
  • [59] Gleizes A., Rahmani B., Gonzalez J. J., Liani B.: Calculation of net emission coefficient in N2, SF6 and SF6-N2 arc plasmas, J. Phys. D: Appl. Phys. 24 1300-9(1991).
  • [60] Cram L. E.: Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines, J. Phys. D: Appl. Phys. 18401-11 (1985).
  • [61] Gleizes A., Gonzalez J. J., Liani B., Raynai G.: Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour, J. Phys. D: Appl. Phys. 26 1921-7 (1993).
  • [62] Essoltani A., Proulx P., Boulos M. l., Gieizes A.: Radiation and self-absorption in argon-iron plasmas at atmospheric-pressure, J. Anal. At. Spectrom. 5 543-7 (1990).
  • [63] Essoltani A, Proulx P, Boulos M l oraz Gieizes A 1994 Effect of the presence of iron vapors on the volumetric emission of Ar/Fe and Ar/Fe/ H2 plasmas Plasma Chem. Plasma Process. 14 301-15.
  • [64] Essoltani A., Proulx P., Boulos M. l., Gleizes A.: Volumetric emission of argon plasmas in the presence of vapors of Fe, Si and Al, Plasma Chem. Plasma Process. 14437-50(1994).
  • [65] Menart J., Malik S.: Net emission coefficients for argon-iron thermal plasmas, J. Phys. D: Appl. Phys.35 867-74 (2002).
  • [66] Aubrecht V., Bartlova M., Coufal O.: Radiative emission from air thermal plasmas with vapour of Cu or W, J. Phys. D: Appl. Phys. 43 434007 (2010).
  • [67] Aubrecht V.: Personal communication (2010).
  • [68] Aubrecht V., Gross B.: Net emission coefficients of radiation in SF6 arc plasmas, J. Phys. D: Appl. Phys. 27 95-100 (1994).
  • [69] Aubrecht V., Bartlova M.: Net emission coefficients of radiation in air and SF6 thermal plasmas, Plasma Chem. Plasma Process. 29 131-47(2009).
  • [70] Iwao T., Mori Y, Okubo M., Sakai T., Tashiro S., Tanaka M., Yurnoto M.: Modelling of metal vapor in pulse TIG including influence of self-absorption, J. Phys. D: Appl. Phys. 43 434010(2010).
  • [71] Tashiro S., Tanaka M., Nakata K., Iwao T, Koshiishi F., Suzuki K., Yamazaki K.: Plasma properties of helium gas tungsten arc with metal vapour, Sci. Technol. Weld. Join. 12 202-7 (2007).
  • [72] Schnick M., Fssel U., Hertel M., Spille-Kohoff A., Murphy A B.: Metal vapour causes a central minimumin are temperature in gas-metal are welding through increased radiative emission, J. Phys. D: Appl. Phys. 43 022001(2010).
  • [73] Kovitya P., Lowke J. J.: Theoretical predictions of ablation-stabilised arcs confined in cylindrical tubes, J. Phys. D: Appl. Phys. 17 1197-212 (1984).
  • [74] Li R., Li X., Jia S., Murphy A B.: Study of different models of the wall ablation process in a capillary discharge, IEEE Trans. Plasma Sci. 38 1033-41 (2010).
  • [75] Beilis I. I.: Parameters of the kinetic layer of are-discharge cathode region, IEEE Trans. Plasma Sci. 13 288-90 (1985).
  • [76] Keidar M., Boyd I. D., Beilis I. I.: On the model of Teflon ablation in an ablation-controlled discharge, J. Phys. D: Appl. Phys. 34 1675-7 (2001).
  • [77] Zaghloul M. R: On the vaporization of Teflon and heated compound-materials in ablation-controlled arcs, J. Appl. Phys. 95 3339-43 (2004).
  • [78] Menart J., Lin L.: Numerical study of a free burning argon are with copper contamination from the anode, Plasma Chem. Plasma Process. 19 153-70 (1999).
  • [79] Zhao G. Y., Dassanayabe M., Etemadi K.: Numerical simulation of a free-burning argon are with copper evaporation from the anode, Plasma Chem. Plasma Process. 1087-99 (1990).
  • [80] Lago F. Gonzalez J. J., Freton P., Gleizes A: A numerical modelling of an electric are and its interaction with the anode: I. The two-dimensional model, J. Phys. D: Appl. Phys. 37 883-97 (2004).
  • [81] Gonzalez J. J., Gleizes A, Proulx P., Boulos M.: Mathematical modeling of a free-burning are in the presence of metal vapor, J. Appl. Phys. 743065-70 (1993).
  • [82] Yamamoto K., Tanaka M., Tashiro S., Nakata K., Yamazaki K., Yamamoto E., Suzuki K., Murphy A. B.: Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding, Sci. Technol. Weld. Join. 13566-72 (2008).
  • [83] Yamamoto K., Tanaka M., Tashiro S., Nakata Y., Yamazaki K., Yamamoto E., Suzuki K., Murphy A B.: Numerical simulation of metal vapor behavior in arc plasma, Surf. Coat. Technol. 202 5302-5 (2008).
  • [84] Haidar J.: The dynamic effects of metal vapour in gas metal are welding, J. Phys. D: Appl. Phys. 43 165204 (2010).
  • [85] Barrett J., Clement C.: Kinetic evaporation and condensation rates and their coefficients, J. Colloid Interface Sci. 150 352-64 (1992).
  • [86] Cordes C., Rudolph B-E., Cammenga H. K.: Massen-und Wärmetransport bei der Verdampfung flüssiger Metalle Z., Metallk. 62 326-8 (1971).
  • [87] Haidar J.: An analysis of heat transfer and fume production in gas metal are welding. III., J. Appl. Phys.85 3448-59 (1999).
  • [88] Gu L., Arntsberg A E., Bakken J. A: DC are behaviour in mixtures of argon and metal (Si) vapour from a liquid metal anode, J. High Temp. Chem. Process. 1 (Suplement do nr. 3) 350-7 (1992).
  • [89] Lowke J. J.: Personal communication (2010).
  • [90] Murphy A., B., Tanaka M., Yamamoto K., Tashiro S., Sato T., Lowke J. J.: Modelling of thermal plasmas for are welding: the role of shielding gas properties and of metal vapour, J. Phys. D: Appl. Phys. 42 194006 (2009).
  • [91] Hirt C. W., Nichols B. D.: Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39201125 (1981).
  • [92] Kim J-W., Na S-J.: A study on the effect of contact tube-to-workpiece distance on weld pool shape in gas metal are welding, Weld. J 74141-52s (1995).
  • [93] Wu C. S., Chen J., Zhang Y. M.: Numerical analysis of both front- and back-side deformation of fully-penetrated GTAW weld pool surfaces, Comput. Mater. Sci. 39 635-42 (2007).
  • [94] Ko S., Farson D., Choi S., Yoo C. D.: Mathematical modeling of the dynamic behavior of gas tungsten are weld pools, Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci. 31 1465-73 (2000).
  • [95] Fan H. G., Tsai H. L., Na S. J.: Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten are welding, Int. J. Heat Mass Transfer 44 417-28 (2001).
  • [96] Voller V. R, Prakash C.: A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transfer 30 1709-19 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0011-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.