PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A two-scale numerical approach to granular systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dwuskalowe numeryczne podejście do systemów granulowanych
Języki publikacji
EN
Abstrakty
EN
A two-scale numerical homogenization approach was used for granular materials. At small-scale level, granular micro-structure was simulated using the discrete element method. At macroscopic level, the finite element method was applied. An up-scaling technique took into account a discrete model at each Gauss integration point of the FEM mesh to derive numerically an overall constitutive response of the material. In this process, a tangent operator was generated with the stress increment corresponding to the given strain increment at the Gauss point. In order to detect a loss of the solution uniqueness, a determinant of the acoustic tensor associated with the tangent operator was calculated. Some elementary geotechnical tests were numerically calculated using a combined DEM-FEM technique.
PL
Zastosowano dwuskalowe numeryczne podejście homogenizacyjne do materiałów granulowanych. Na poziomie małej skali symulowano granulowaną mikrostrukturę przy zastosowaniu metody elementów dyskretnych. Na poziome dużej skali zastosowano metodę elementów skończonych. Technika przechodzenia do wyższej skali uwzględniła dyskretny model w każdym punkcie całkowania Gaussa siatki MES w celu wyprowadzenia numerycznego obliczenia wynikowej konstytutywnej odpowiedzi materiału. W tym procesie, operator styczny został obliczony za pomocą przyrostu naprężenia odpowiadającego danemu przyrostowi odkształcenia w punkcie Gaussa. W celu wykrycia utraty jednoznaczności rozwiązania, określono wyznacznik tensor akustycznego związanego z operatorem stycznym. Obliczono numerycznie kilka podstawowych testów geotechnicznych stosując połączoną technikę MED-MES.
Twórcy
autor
autor
  • Gdańsk University of Technology, Civil and Environmental Engineering Department, micnitka@pg.gda.pl
Bibliografia
  • 1. C. Miehe, J. Schotte, J. Schröder, Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171, 387-418, 1999.
  • 2. F. Feyel, J.L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long ?ber SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 183, 309-330, 2000.
  • 3. K. Terada, N. Kikuchi, Nonlinear homogenization method for practical applications. Computational Methods in Micromechanics (eds. S. Ghosh and M. Ostoja-Starzewski), 1-16, 1995.
  • 4. S. Ghosh, K. Lee, S. Moorthy, Multiple scale analysis of heterogeneous elastic structures using homogenisation theory and Voronoi cell finite element method. International Journal for Solids and Structures 32(1), 27-62, 1995.
  • 5. V. G. Kouznetsova, M. Geers, W. A. M. Brekelmans, Size of representative volume element in a secondorder computational homogenization framework. International Journal for Multiscale Computational Engineering 2(4), 575-598, 2004.
  • 6. I. M. Gitman, H. Askes, L.J. Sluys, Coupled volume multiscale modelling of quasibrittle material. European Journal of Mechanics A/Solids 27(3), 302-327, 2008.
  • 7. T.J. Massart, V. Kouznetsova, R.H.J. Peerlings, M.G.D. Geers, Computational Homogenization for Localization and Damage. Advance Computational Materials Modelling: From Classical to Multi-scale Techniques (eds.: M. Vaz Júnior, E. A. de Souza Neto, P. A. Muñoz-Rojas), 2010.
  • 8. J.C. Michel, H. Moulinec, P. Suquet, Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering 172, 109-143. 1999.
  • 9. A. Hund, E. Ramm, Locality constraints within multiscale model for nonlinear material behaviour. International Journal for Numerical Methods in Engineering 70(13), 1613-1632, 2007.
  • 10. S. Eckardt, C. Könke, Adaptive damage simulation of concrete using heterogeneous multiscale models. Journal of Algorithms and Computational Technology 2(2), 275-297, 2008.
  • 11. A. Ibrahimbegovic, D. Markovic, F. Gatuingt, Constitutive model of coupled damageplasticity and its ?nite element implementation. European Journal of Computational Mechanics 12(4), 381-405, 2003.
  • 12. Ł. Kaczmarczyk, C.J. Pearce, N. Bicanic, E. de Souza Neto, Numerical multiscale solution strategy for fracturing heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 199, 1100-1113, 2009.
  • 13. R. Hill, Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids 11(5), 357-372, 1963.
  • 14. P. Evesque, Fluctuations, correlations and representative elementary volume (REV) in granular materials. Powders and Grains 11, 6-17, 2000.
  • 15. I.M. Gitman, Representative volumes and multi-scale modelling of quasi-brittle materials. PhD thesis, Delft University of Technology, 2006.
  • 16. Ł. Skarżyński, J. Tejchman, Mesoscopic modelling of strain localization in concrete. Archives of Civil Engineering LV 4, 503-526, 2009.
  • 17. Ł. Skarźyński, J. Tejchman, Determination of representative volume element in concrete under tensile deformation. Computers and Concrete, 2011 (in print).
  • 18. M. Nitka, Modelisation multi-echelle des milieux granulaires (Multiscale modeling of granular media), PhD Thesis, University of Grenoble, 2010.
  • 19. M. Nitka, G. Combe, C. Dascalu, J. Desrues, Two-scale modeling of granular materials: a DEM-FEM approach. Granular Matter 13, 277-281, 2011.
  • 20. A.E.H. Love, A treatise on the mathematical theory of elasticity. Cambridge University Press, 217-236; 1927.
  • 21. J. Bonnet, R.D. Wood, Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 53-117, 1997.
  • 22. G. Bilbie, C. Dascalu, R. Chambon, D. Caillerie, Micro-fracture instabilities in granular solids. Acta Geotechnica 3, 25-35, 2008.
  • 23. J.R. Rice, The localization of plastic deformation. Theoretical and Applied Mechanics, W.T. Koiter, ed., North-Holland Publishing Company, 207-220, 1976.
  • 24. M.P. Allen, Tildesley, Computer simulation of liquids. Oxford Science Publications, 1994.
  • 25. P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies; Geotechnique 29, 1, 47-65, 1979.
  • 26. G. Combe, J.-N. Roux, Discrete numerical simulation, quasitatic deformation and the origins of strain in granular materials. Proc. 3rd International Symposium on Deformation Characteristics of Geomaterials, Lyon, France (H. DiBenedetto, T. Doanh, H. Geoffroy, C. Sauzeat, eds.), 1071-1078, 2003.
  • 27. J.-N. Roux, G. Combe, On the meaning and microscopic origins of quasistatic deformation of granular materials. Proc. 16th ASCE Engineering Mechanics Conference, 2003.
  • 28. J.-N. Roux, F. Chevoir, Discrete numerical simulation and the mechanical behaviour of granular materials. Bulletin des Laboratoires des Ponts et Chaussees 254, 109-138, 2005.
  • 29. F. Calvetti, G. Combe, J. Lanier, Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mechanics of Cohesive-Frictional Materials 2, 121-163, 1997.
  • 30. E.-M. Charalmpidou, G. Combe, G. Viggiani, J. Lanier, Mechanical observations on dense 2D granular media. Powders and Grains, Colorado, USA, 2009.
  • 31. J. Bathurst, L. Rothenburg, Micromechanical aspects of isotropic granular assemblies with linear contact interactions. Journal of Applied Mechanics 55, 17-23, 1988.
  • 32. B. Cambou, P. Dubujet, F. Emeriault, F. Sidoroff, Homogenization for granular materials. European Journal of Mechanics Solids 14, 255-276, 1995.
  • 33. B. Emeriault, B. Cambou, A. Mahboudi, Homogenization for granular materials: non reversible behavior. Mechanics of Cohesive-Frictional Materials 1, 199-218, 1996.
  • 34. M. Ellero, Smoothed particle dynamics methods for the simulation of viscoelastic fluids. Thesis, Berlin University, 3-10, 2004.
  • 35. W. Wu, Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe, 1992.
  • 36. R. Castellanza, R. Nova, M. Arroyo, Oedometric testing and compaction bands Ii cemented soils. Soils and Foundations 45, 2, 181-194, 2005.
  • 37. L. Widulinski, J. Tejchman, J. Kozicki, D. Leśniewska, Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining Wall. Int. J. Solids and Structures 48, 7-8, 1191-1209, 2011.
  • 38. J. Tejchman, Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics 31, 8, 595-611, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0009-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.