PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of rapid flow of granular material in a hopper

Autorzy
Identyfikatory
Warianty tytułu
PL
Numeryczne modelowanie szybkiego przepływu materiału ziarnistego w leju silosowym
Języki publikacji
EN
Abstrakty
EN
Paper presents results on numerical modelling of rapid flow of granular material in a model silo with convergent walls. The calculations were performed using the finite element method based on the polar elsto-plastic constitutive relation by Műhlhaus. It differs from the conventional theory of plasticity by the presence of Cosserat rotations and couple stresses using a mean grain diameter as a characteristic length. The characteristic length causes that numerical results do not depend upon the mesh discretisation. The model tests on rapid silo flow of glass beads performed by Renner in a glass hopper with large wall inclination from the bottom were numerical and experimental results was obtained. In addition, the FE-calculations were performed for very rough walls. Advantages and limitations of the continuum approach for simulations of rapid silo flow were outlined.
PL
Artykuł przedstawia wyniki numerycznego modelowania szybkiego przepływu materiału ziarnistego w modelu silosu ze ścianami zbieżnymi. Obliczenia zostały przeprowadzone za pomocą metody elementów skończonych wykorzystującej mikropolarne sprężystoplastyczne prawo konstytutywne Műhlhausa. Prawo to różni się od klasycznej teorii plastyczności obecnością obrotów Cosseratów, naprężeń momentowych oraz długości charakterystycznej w formie średniej średnicy ziaren. Obecność długości charakterystycznej sprawia, że wyniki numeryczne nie zależą od siatki elementów skończonych. Numerycznemu symulowaniu poddano doświadczenia modelowe szybkiego przepływu szklanych kulek, które zostały przeprowadzone przez Rennera w szklanym leju silosowym o bardzo dużym nachyleniu ścian do poziomu. W obliczeniach dla płaskiego stanu odkształceń uwzględniono siły bezwładności i liniowe tłumienie lepkie. Otrzymano dobrą zgodność między wynikami numerycznymi a doświadczalnymi. Dodatkowo wykonano obliczenia dla ścian bardzo szorstkich. Podkreślono zalety i wady modelu ośrodka ciągłego do symulowania szybkiego przepływu silosowego.
Słowa kluczowe
Twórcy
autor
  • Gdańsk University of Technology, Institute for Concrete Structures
Bibliografia
  • 1. K. TEJCHMAN, Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen, Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe, 117, 1-236, 1989.
  • 2. J. TEJCHMAN and G. GUDEHUS, Silo-music and silo-quake, experiments and a numerical Cosserat approach, Powder Technology, 76, 2, 201-212, 1993.
  • 3. J. TEJCHMAN, Behaviour of granular medium in a silo - model tests in a plane silo with parallel walls, Part 3, Archives of Civil Engineering, 39, 1, 7-28, 1993.
  • 4. J. TEJCHMAN, Dynamic phenomena in silos during discharge, Archives of Civil Engineering, 40, 1, 75-88, 1994.
  • 5. J. TEJCHMAN, Shear localisation and autogeneous dynamic effects in granular bodies, Publication Series of the Institute for Rock and Soil Mechanics, Karlsruhe University, 140, 1-353, 1997.
  • 6. U. HÄUSSLER and J. EIBL, Numerical investigation of discharging silos, J. Engineering Mechanics, 110, 975-971, 1984.
  • 7. J. EIBL and G. ROMBACH, Consistent modelling of filling and discharging processes in silos, Intern. Conf. Silos - Forschung und Praxis, Universität Karlsruhe, SFB 219, 1-15, 1988.
  • 8. B. VEDAIE and A.G. BISHARA, Pressures in circular hopper silos under axisymmetric mass flow, Intern. Conf. Silos - Forschung und Praxis, Karlsruhe, SFB 219, 25-55, 1988.
  • 9. G. GUDEHUS and J. TEJCHMAN, Some mechanisms of a granular mass in a silo - model tests and a numerical Cosserat approach, Advances in Continuum Mechanics, [Eds.:] O. Brüller, V. Mannel, J. Najar (dedicated to H. Lippmann), Springer Verlag, Berlin, Heidelberg 1991, 178-193.
  • 10. E. TANO, L.A. GODOY and M.A. DIEZ, Numerical modelling of the flow of solids stored in silos, Computer Methods and Advances in Geomechanics, [Eds.:] H. J. Siriwardane and M. Zaman, 2, 1281-1291, 1994.
  • 11. E. RAGNEAU and J.M. ARIBERT, General recurrent determination of grain action along silo walls during filling, transient flow and permanent emptying, Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 95, Nürnberg 1995, 205-219.
  • 12. C. RUCKENBROD and J. EIBL, Dynamic phenomena in discharging silos, Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 95, Nürnberg 1995, 193-202.
  • 13. J. TEJCHMAN, Silo quake - experiments and a polar hypoplastic model, Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 95, Nürnberg, 1995, 151-163.
  • 14. J. TEJCHMAN, Shear zones and dynamic effects during silo emptying, Part 1, 2, Archives of Civil Engineering, 43, 4, 1997.
  • 15. P.A. CUNDALL and O.D.L. STRACK, A discrete numerical model for granular assemblies, Geotechnique, 29, 47-65, 1979.
  • 16. O.R. WALTON and R.L. BROWN, Stress calculations for assemblies of inelastic spheres in uniform shear, Acta Mech., 63, 73-86, 1986.
  • 17. S.B . SAVAGE, Numerical simulations of Couette flow of granular materials: Spatio-temporal coherence of 1/f noise, [in:] Physics of Granular Media, [Eds.:] D. Bideau and J. Dodds, Nova Science Publishers Inc. 343-362, 1992.
  • 18. H. SAKAGUCHI and E. OZAKI, Analysis of the formation of arches plugging the flow of granular materials, [in:] Powders and Grains, [Eds.:] C. Thornton, Balkema, Rotterdam 1993, 351-357.
  • 19. C. THORNTON and G. SUN, Axisymmetric compression of 3D polydisperse systems of spheres, [in:] Powders and Grains, [Eds.:] C. Thornton, Balkema, Rotterdam 1993, 129-134.
  • 20. K.D. KAFUI and C. THORNTON, Some aspects of silo discharge: computer simulations, Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 95, Nürnberg 1995, 379-388.
  • 21. K.D. KAFUI and C. THORNTON, Some observations on granular flow in hoppers and silos, [in:] Powders and Grains, [Eds.:] R.P. Behringer and J.T. Jenkins, Balkema, Rotterdam 1997, 511-514.
  • 22. P.A. LANGSTON, D.M. HEYES and U. TÜZÜN, Discrete element simulation of granular flow in hoppers, Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 95, Nürnberg 1995, 357-367, 1995.
  • 23. R. GUTFRAIND and O. POULIQUEN, Study of the origin of shear zones in quasi-static vertical chute flows by using discrete particle simulations, Mechanics of Materials, 24, 273-285, 1996.
  • 24. O. POULIQUEN and R. GUTFRAIND, Stress fluctuations and shear zones in quasistatic granular chute flows, Physical Review, 53, 552-561, 1996.
  • 25. X. LIN, M. NAKAGAWA and G. MUSTOE, Simulations on hopper flows of elongated particles, Proc. 5th World Congress of Chemical Engineering, San Diego, 5, 367-373, 1996.
  • 26. S. MASSON, J. MARTINEZ and D. DESERABLE, Comparative simulations of particle flow using a distinct element method and a lattice grain model, Proc. 5th World Congress of Chemical Engineering, San Diego, 5, 349-355, 1996.
  • 27. S. LUDING, J. DURAN, E. CLEMENT and J. REJCHENBACH, Computer simulations and experiments of dry granular media: polydisperse disks in a vertical pipe, Proc. 5th World Congress of Chemical Engineering, San Diego; 5, 325-330, 1996.
  • 28. G.H. RISTOW, Outflow rates and stresses in 3D hoppers, [Eds.:] R.P. Behringer and J.T. Jenkins, Balkema, Rotterdam 1997, 527-530.
  • 29. S.B. SAVAGE and D.J. JEFFREY, The stress tensor in a granular flow at high shear rates, J. Fluid Mech., 110, 255-272, 1981.
  • 30. P.K. HAFF, Grain flow as a fluid - mechanical phenomenon, J. Fluid Mech., 134, 401-430, 1983.
  • 31. J.T. JENKINS and M.W. RICHMAN, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks, Phys. Fluids, 28, 3485-3494, 1985.
  • 32. C.K.K. LUN and S.B. SAVAGE, A simple kinetic theory for granular flow of rough, inelastic spherical particle, J. Appl. Mech., 54, 47-53, 1987
  • 33. J.T. JENKINS, Boundary conditions for rapid granular flow: flat, frictional walls, J. Appl. Mech., 59, 120-127, 1992.
  • 34. G. FÜTTERER, Untersuchungen zum schnellen Fließen von trockenen, kohäsionslosen Schüttgütern in konvergenten Schächten, Dissertation, Karlsruhe University, 1991, 1-140.
  • 35. G.W. BAXTER and R.P. BEHRINGER, Pattern formation and time-dependence in flowing sand, [in:] Two Phase Flows and Waves, Springer Verlag, New York 1990, 1-29.
  • 36. J. MARTINEZ, S. MASSON and D. DESERABLE, Flow patterns and velocity profiles during silo discharge simulation with a lattice grain model, Proc. of the 3rd European Symposium on Storage and Flow of Particulate Solids, PARTEC 95, Nürnberg 1995, 367-379.
  • 37. H. BUGGISCH and M. RENNER, Theoretische und experimentele Untersuchungen zum schnellen Fließen von Schüttgütern in konvergenten Geometrien, SFB "Silos", Karlsruhe University, 1993, 65-86.
  • 38. M. RENNER, Über die Stabilität der stationären Strömung von Schüttgütern in verlikalen Schächten, Dissertation, Faculty of Chemistry, Karlsruhe University, 1996, 1-166.
  • 39. J. SCHWEDES, Fließverhalten von Schüttgütern in Bunkern, Weinheim 1968.
  • 40. W. GÜNTHER, Zur Statik und Kinematik des Cosserat-Kontinuums, Abh. Braunschweigische Wiss., 10, 1958.
  • 41. H. SCHÄFER, Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums, Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, W., Akademie-Verlag, Berlin 1962.
  • 42. H.B. MÜHLHAUS, Stress and couple stress in a layered half plane with surface loading, Int. J. for Numer. and Analyt. Met. in Geomech., 13, 545-563, 1989.
  • 43. H.B. MÜHLHAUS, Berücksichtigung von Inhomogenitäten im Gebirge im Rahme einer Kontinuums-theorie, Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe, 106, 1987.
  • 44. L.J. SLUYS, Wave propagation, localisation and dispersion in softening, Dissertation, Delft University, 1992, 1-163.
  • 45. A. BENALLAL, R. BILLARDON and G. GEYMONAT, Localisation phenomena at the boundaries and interfaces of solids, Proc. 3rd Int. Conf. Constitutive Laws for Engineering Materials: Theory and Applications, Tucson, Arizona 1991, 387-390.
  • 46. R. DE BORST, H.B. MÜHLHAUS, J. PAMIN and L.Y. SLUYS, Computational modelling of localization of deformation, Proc. 3rd Int. Conf. Comp. Plasticity, [Eds.:] D.R.J. Owen, E. Onate and E. Hinton, Pineridge Press, Swansea 1992, 483-508.
  • 47. M. ODA, KONISHI and S. NEMAT-NASSER, Experimental micro-mechanical evaluation of strength of granular materials, effects of particle rolling, Mechanics of Materials, 1, 269-283, 1982.
  • 48. M. UESUGI, Friction between dry sand and construction, Dissertation, Tokyo Institute of Technology, 1987.
  • 49. M. UESUGI, H. KISHIDA and Y. TSUBAKIHARA, Behaviour of sand particles in sand-steel friction, Soils and Foundations, 28, 1, 107-118, 1988.
  • 50. M. ODA, Micro-fabric and couple stress in shear bands of granular materials, [in:] Powders and Grains, [Ed.:] C. Thornton, Rotterdam, Balkema, 161-167, 1993.
  • 51. N. BOGDANOVA-BONTSCHEVA and H. LIPPMANN, Rotationssymmetrisches ebenes Fliessen eines granularen Modellmaterials, Acta Mech., 21, 93-113, 1975.
  • 52. M. BECKER and H. LIPPMANN, Plane plastic flow of granular model material, experimental set-up and results, Archives of Mechanics, 29, 829-846, 1977.
  • 53. K. KANATANI, A micro-polar continuum theory for granular materials, Int. J. Engng. Sci., 17, 419-432, 1979.
  • 54. H.B. MÜHLHAUS and I. VARDOULAKIS, The thickness of shear bands in granular materials, Geotechnique, 37, 271-283, 1987.
  • 55. H.B. MÜHLHAUS, Application of Cosserat theory in numerical solutions of limit load problems, Ing. Arch., 59, 124-137, 1989.
  • 56. H.B. MÜHLHAUS, Continuum models for layered and blocky rock, Comprehensive Rock Engineering, 2, 209-231, 1990.
  • 57. Z. MRÓZ, Non-associated flow laws in plasticity, J. Mechanique, 1, 21-42, 1963.
  • 58. J. TEJCHMAN and W. Wu, Numerical study on shear band patterning in a Cosserat continuum, Acta Mech., 99, 61-74, 1993.
  • 59. I. VARDOULAKIS, Shear band inclination and shear modulus of sand in biaxial tests, Int. J. Num. Anal. Met. Geomech., 4, 103-119, 1980.
  • 60. R. DE BORST, Simulation of localisation using Cosserat theory: a reappraisal of the Cosserat continuum, Engng. Comput., 8, 317-332, 1991.
  • 61. P. PAPANASTASIOU and I. VARDOULAKIS, Numerical treatment of progressive localization in relation to borehole stability, Int. J. Num. Anal. Meth. Geomech., 16, 389-424, 1992.
  • 62. J. TEJCHMAN, Numerical study on localised deformation in a Cosserat Continuum, [in:] Localisation and Bifurcation Theory for Soils and Rocks, [Eds.:] R. Chambon, J. Desrues and I. Vardoulakis, Balkema, Rotterdam 1994, 257-275.
  • 63. P. UNTERREINER, I. VARDOULAKIS, M. BOULON and J. SULEM, Essential features of a Cosserat continuum in interfacial localisation, [in:] Localisation and Bifurcation Theory for Soils and Rocks, [Eds.:] R. Chambon, J. Desrues and I. Vardoulakis, Balkema, Rotterdam 1994, 141-155.
  • 64. J. TEJCHMAN and W. WU, Experimental and numerical study of sand-steel interfaces, Int. J. Num. Anal. Meth. Geomech., 19, 8, 513-537, 1995.
  • 65. P. STEINMANN, Theory and numerics of ductile micro-polar elastoplastic damage, Int. Journal for Numerical Methods in Engineering, 38, 583-606, 1995.
  • 66. J. TEJCHMAN and W. WU, Dynamic patterning of shear bands in a Cosserat continuum, Int. Engineering Mech. Journal ASCE, 123, 2, 123-134, 1997.
  • 67. A. MURAKAMI and N. YOSHIDA, Cosserat continuum and finite element analysis, [in:] Deformation and Progressive Failure in Geomechanics, [Eds.:] A. Asaoka, T. Adachi and F. Oka, Pergamon, 1997, 871-876.
  • 68. A.E. GROEN, Three-dimensional elasto-plastic analysis of soils, Dissertation, Delft University, 1-113, 1997.
  • 69. W. WU, Hypoplasticity model for barotropy and pyknotropy of granular materials, Veröffentlichungen des Institutes für Boden- und Felsmechanik, Universität Karlsruhe, 129, 1-154, 1992.
  • 70. M.B. DAS, Fundamentals of soil dynamics, Elsevier, New York 1983.
  • 71. K.J. BATHE, Finite element procedures in engineering analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1982.
  • 72. Y. YOSHIMI and T. KISHIDA, Friction between sand and metal surface, Proc. 10th ICSMFE, 1, 1981, 831-834.
  • 73. M. ORTIZ and I.C. SIMO, An analysis of a new class of integration algorithms for elastoplastic constitutive relation, Int. J. Numer. Methods in Engng., 23, 353-366, 1986.
  • 74. Y. HATAMURA and T. TAKEUCHI, Analysis of physical phenomena in silos, [in:] Powders and Grains, [Eds.:] J. Biarez and R. Gourves, Balkema, Rotterdam 1989, 445-452.
  • 75. J. HUETINK and P. VAN DER HELM, On Euler-Lagrange finite element formulation in forming and fluid problems, Proc. NUMIFORM, [Eds.:] Chenot et al., Balkema, Rotterdam 1992, 45-54, 1992.
  • 76. P. VAN DEN BERG, Analysis of soil penetration, Dissertation, Delft University, 1994, 1-175.
  • 77. H.B. MÜHLHAUS, LI CHIN HSIN and P. HORNBY, Solid-fluid transition in granular flow: Constitutive and computational aspects, Felsmechanik Kolloquium, University Karlsruhe, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB3-0002-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.