PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Methods for moisture storage and transport property determination of autoclaved aerated concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
5th International Conference on Autoclaved Aerated Concrete "Securing a sustainable future" to be held at Bydgoszcz to celebrate 60 years of AAC experience in Poland, Bydgoszcz, September 14-17, 2011
Języki publikacji
EN
Abstrakty
EN
The hygric performance of autoclaved aerated concrete is a key determinant for many other material properties as e.g. thermal conduction, carbonation or shrinkage behavior. Laboratory determination of hygric material properties, i.e. moisture storage and moisture transport, is hence a prerequisite and a standard in production and process supervision. In that context, prediction and simulation of the hygric material performance based on numerical calculation models has become a widely used research and design tool. However, for assessment of the material behavior under variable climatic conditions, the hygric material properties have to be determined in a first step. In a second step, these properties have to be transformed into the non-linear coefficients required by these numerical calculation models. This paper is the first out of two focusing on the first step. It introduces different methods for moisture property determination. The methods cover the full range of possible moisture stages. Moisture storage and moisture transport is distinguished. For moisture transport, vapor and liquid phase transport is considered by different direct and indirect methods. The methods are applied for an aerated autoclaved concrete. The obtained data is shown and discussed. In a second step, described in a second paper, this data is used to derive the non-linear material functions required for sophisticated numerical simulation of the hygric material performance.
Czasopismo
Rocznik
Tom
Strony
70--77
Opis fizyczny
Bibliogr. 37 poz., il.
Twórcy
autor
  • Xella Technologie- und Forschungsgesellschaft, Section of Applied Research and Building Physics, Hohes Steinfeld 1, 14797 Kloster Lehnin, Germany
Bibliografia
  • [1] Adan, O.C.G.: On the fungal defacement of interior finishes. Ph.D. thesis, Eindhoven University of Technology, the Nederlands, 1994.
  • [2] Bomberg, M., Pazera, M., Plagge, R.: Analysis of Selected Water Absorption Coefficient Measurements. Journal of Thermal Envelope and Building Science 28, 227-243, 2005.
  • [3] Broken H. J. P .: Moisture transport in brick masonry: the grey area between bricks. Ph.D. thesis, Eindhoven University of Technology, the Nederlands, 1998.
  • [4] Burch, D.M., Thomas, W.C. & Fanney, A.H.: Water Vapor Permeability Measurement of Common Building Materials. ASHRAE Transactions, 98, Pt. 2, 1992.
  • [5] Descamps, F.: Continuum and discrete modelling of isothermal water and air transfer in porous media. Ph.D. Thesis, Catholic University Leuven. Leuven, Belgium 1997.
  • [6] Fitz, C. & Krus, M.: Normenwirrwarr bei der Bestimmung von feuchtetechnischen Kennwerten. IBP Mitteilung 441, 2004.
  • [7] Galbraith, G.H ., McLean, R.C. & Kelly, D.: Moisture permeability measurements under varying barometric pressure. Building Research and Information, 25, No. 6: 348-353, 1997.
  • [8] Häupl, P., Stopp, H., Strangfeld, P.: Messverfahren und Messanordnung zur gleichzeitigen Bestimmung der Kapillarwasserleitfähigkeit und der gravimetrischen Feuchteleitfähigkeit von kapillarporösen Stoffen. Patentschrift DD 290 951 A5, ISSN 0433-6461, 1989.
  • [9] Janssen, H., Derluyn, H., Carmeliet, J.: Moisture transfer through mortar joints: interface resistances or hygric propertiy changes? Proceedings to the 12th Symposium for Building Physics, Dresden University at Technology, Institute of Building Climatology, 2, 808-815, Dresden 2007.
  • [10] Johannesson, B. & Janz, M., 2002: Test of Four Different Experimental Methods to Determine Sorption Isotherms. Journal of Materials in Civil Engineering, 14, No. 6: 471-477, 2002.
  • [11] Klute, A.: The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Science, 113, No. 4: 264-276, 1972.
  • [12] Klute, A.: Water Retention: Laboratory Methods. In: Klute, A. (ed.). Methods of soil analysis. Part I. Physical and mineralogical methods. 2nd edition, No.9, Agronomy Series, Am. Soc. Agron., Soil Sci. Soc. Am. Madison. p. 635-662, 1986.
  • [13] Klute, A. & Dirkse n, C.: Hydraulic conductivity and diffusivity laboratory methods. In: Klute, A. (ed.). Methods of soil analysis. Part I. Physical and mineralogical methods. 2nd edition, No.9, Agronomy Series, Am. Soc. Agron., Soil Sci. Soc. Am. Madison. p. 687-734, 1986.
  • [14] Krus, M.: Feuchtetransport- und Speicherkoeffzienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Meßtechniken. Dissertation Universität Stuttgart 1995.
  • [15] Krus, M. & Holm, A.: Approximationsverfahren für die Bestimmung feuchtetechnischer Materialkennwerte. Proceedings to the 10th Symposium for Building Physics, Dresden University of Technology, Institute of Building Climatology, 2, 423-432, 1999.
  • [16] Künzel, H. M.: Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten. Dissertation, Universität Stuttgart, Fakultät Bauingenieur- und Vermessungswesen, 1994.
  • [17] Mukhopadhyaya, P., Kumaran, K., Normandin, N, Goudreau, P.: Effect of Surface Temperature on Water Absorption Coefficient of Building Materials. Journal of Thermal Envelope and Building Science, 26, No. 2: 179-195, 2002.
  • [18] Ojanen, T., Salonvaara, M., Simonson, C.J.: Integration of simplified drying tests and numerical simulation in moisture performance analysis of the building envelope. 6th Symposium on Building Physics in the Nordic Countries, 151-158, Trondheim 2002.
  • [19] Pel, L.: Moisture transport in building materials. Ph.D. thesis at Eindhoven University of Technology, 1995.
  • [20] Plagge R.: Bestimmung der ungesättigten hydraulischen Leitfähigkeit im Boden. Dissertation, Bodenökologie und Bodengenese, Heft 3, 1991.
  • [21] Plagge, R.: Development and design of a cup diffusion measurement device. unpublished, Institute of Building Climatology, Dresden University of Technology, 2001.
  • [22] Plagge, R., Cerny, R., Mathiasovsky, P.: Development of insulation Materials with specially designed properties for building renovation, Workpackage 3 - Laboratory Measurements. Final report of the INSUMATproject, Workpackage 3, Self publishing at TU Dresden, 2003.
  • [23] Plagge, R., Scheffler, G., Grunewald, J.: Automatic measurement of the water uptake behavior for building materials. 7th Symposium on Building Physics in the Nordic Countries, Reykjavik June 2005. 1, 15-22.
  • [24] Plagge, R., Scheffler, G., Nicolai, A.: Experimental methods to derive hygrothermal material functions for numerical simulation tools. Buildings X Conference, Clearwater Beach FL, December 2007.
  • [25] Richards, L.A. & Fireman, M.: Pressure-Plate Apparatus for Measuring Moisture Sorption and Transmission by Soils. Soil Science, 56, No. 6: 395-404, 1943.
  • [26] Richards, R.F., Burch, D.M. & Thomas, W.C.: Water Vapor Sorption Measurements of Common Building Materials. ASHRAE Transactions 98, Pt. 2, 1992
  • [27] Scheffler, G., Plagge, R.: Drying behaviour of building materials. 7th Symposium on Building Physics in the Nordic Countries, Proceedings 1, 23-30, Reykjavik 2005.
  • [28] Scheffler, G.A.: Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage. PhD thesis, Institute of Building Climatology, Dresden University of Technology, 2008.
  • [29] Scheffler, G.A., Plagge, R.: Introduction of a drying coefficient for building materials. Buildings XI Conference, Clearwater Beach FL, December 2010.
  • [30] Scheffler, G.A.: Introduction of a full range model for liquid and vapor transport properties of autoclaved aerated concrete. Article submitted to the 5th International Autoclaved Aerated Concrete Conference in Bydgoszcz, Poland September 2011.
  • [31] Wilson, L.G. & Luthin, J.N.: Effect of air flow ahead of the wetting front on infiltration. Soil Science, 96, 136-143, 1963.
  • [32] Wittmann, F.H. (ed.): Autoclaved Aerated Concrete, Moisture and Properties. Elsevier Scientific Publishing Company, Amsterdam, 1983.
  • [33] Worch, A.: The Behaviour of Vapour Transfer on Building Material Surfaces: The Vapour Transfer Resistance, Journal of Thermal Envelope & Building Science 28-2, 2004.
  • [34] ISO 11274:1998 Soil quality - Determination of the water retention characteristics - Laboratory methods.
  • [35] ISO 12571 : 2000 Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties.
  • [36] ISO 12572 : 2001 Hygrothermal performance of building materials and products - Determination of water vapour transmission properties.
  • [37] ISO 15148 : 2002 Hygrothermal performance of building materials and products - Determination of water absorption coefficient by partial immersion.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0076-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.