PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water transport in air-pores

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
5th International Conference on Autoclaved Aerated Concrete "Securing a sustainable future" to be held at Bydgoszcz to celebrate 60 years of AAC experience in Poland, Bydgoszcz, September 14-17, 2011
Języki publikacji
EN
Abstrakty
EN
Water transport experiments were performed on AAC with known pore structure and well-controlled moisture content. Specimens with the critical moisture content for freeze/thaw resistance were observed with the cryo-SEM. Evidences were confirmed that the ice segregated on the surface of air-pores as a result of redistribution of unfrozen water coming from the matrix part between air-pores. The standpipe absorptivity test for specimens with an air-pore volume of approx. 45 vol.% while having different mean air-pores diameters showed an abrupt jump of permeability when the mean air-pores diameter was smaller than 0.15 mm or the air-pores connectivity was 20%. In the free water uptake test using a dried AAC specimen, the capillary suction precedes other water transports and saturates the capillaries of 35 vol. % instantly followed by a slow absorption process, i.e. escaping of entrapped air bubbles that controls the subsequent absorption rate.
Czasopismo
Rocznik
Tom
Strony
60--65
Opis fizyczny
Bibliogr. 14 poz., il.
Twórcy
autor
Bibliografia
  • [1] Kunhanandan Nambiar, E. K. and Ramamurthy, K. 2007. Air-void characterisation of foam concrete. Cement and Concrete Research. 37, 221-230.
  • [2] Laurent, J.-P., 1991. La conductivité thermique 'a sec' des bétons cellulaires autoclavés: Un modéle conceptual. Materials and Structures. 24, 221-226.
  • [3] Kunhanandan Nambiar, E. K. and Ramamurthy, K., 2007. Sorption characteristics of foam concrete. Cement and Concrete Research. 37, 1341-1347.
  • [4] Picket, G., 1953. Flow of moisture in hardened portland cement during freezing. Proc. Highway Research Board. 32, 276-284.
  • [5] Gruble, P., 1981. Uber die Rolle des Eises in Gefuge Zemengebundener Baustoffe. Beton. 31 (2), 54-58.
  • [6] Corr, D. J., Monteiro, P. J. M. and Bastacky, J., 2002. Microscopic characterization of ice morphology in entrained air voids. ACI Materials Journal. 99 (2), 190-195.
  • [7] Monteiro, P. J. M., Coussy, O. and Silva, D. A., 2006. Effect of cryosuction and air void transition layer on hydraulic pressure of freezing concrete. ACI Materials Journal. 103 (2), 136-140.
  • [8] Fagerlund, G., 1978. The critical degree of saturation method assessing the freez/thaw resistance of concrete. Materials and Structures. 10 (58), 217-229.
  • [9] Tada, S. and Nakano, S., 1983. Microstructural approach to properties of moist cellular concrete. Autoclaved Aerated Concrete –Moisture and Properties. ed. F. H. Wittmann, Elsevier. 71-88.
  • [10] Tada, S., 1996. Microstructural approach to frost resistance of highly porous materials. Proc. 7th Int. Conf. Durability Build. Mater. Components. Stockholm. Vol. 1, 299-308.
  • [11] Hall, C. 1989. Water sorptivity of mortar and concrete: A review. Magazine of Concrete Research. 41 (147), 51-61.
  • [12] Martys, N. S. and Ferraris, C. F., 1997. Capillary transport in mortars and concrete. Cement and Concrete Research. 27 (5), 747-760.
  • [13] Hall, C. and Hoff, W., 2002. Water transport in brick, stone and concrete. Spon Press, London and New York.
  • [14] Bomberg, M., 1974. Moisture flow through porous building materials. Lund Institute of Technology. Report 52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0076-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.