PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porosity in autoclaved aerated concrete (AAC): A review on pore structure, types of porosity, measurement methods and effects of porosity on properties

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
5th International Conference on Autoclaved Aerated Concrete "Securing a sustainable future" to be held at Bydgoszcz to celebrate 60 years of AAC experience in Poland, Bydgoszcz, September 14-17, 2011
Języki publikacji
EN
Abstrakty
EN
The fraction of pore volume in AAC products covers the range from 65 to 90%. There is a set of different types of pores, e.g. large air pores are a macroscopic structural element, capillary pores and nano pores, which are connected to microstructure of the solid matrix and have specific functional effects. Different methods of pore generation and characterization of pore size distribution are summarized. Gas producing agents, foaming agents, prefabricated foam and voluminous water retarding components are compared with regard on their suitability for AAC product properties. Image analysis, mercury intrusion porosimetry, gas adsorption porosimetry and other methods are reviewed with respect of their application for AAC material. Influence of pore size, pore shape, proportion of different pore types on related properties is presented and discussed. Homogeneity of material, isotropy of properties and range of property values with respect to porosity influences are regarded.
Czasopismo
Rocznik
Tom
Strony
39--43
Opis fizyczny
Bibliogr. 20 poz., il.
Twórcy
autor
  • Ingenieurburo fur Material- und Verfahrenstechnik, Sagmuhlstrasse 14, 82140 Olching, Germany
Bibliografia
  • [1] Aono Y. et al., 2005. Mechanisms and countermeasures against cavity defectives in AAC during manufacturing. Autoclaved Aerated Concrete - Innovation and Development, Taylor & Francis Group, London, pp. 39-48.
  • [2] Cabrillac R. et al. 2006, Experimental study of the mechanical anisotropy of aerated concretes and of the adjustment parameters of the introduced porosity. Construct. Build. Mater. 20 (5), 286-295.
  • [3] Gawin D.J. et al., 2004. Thermal Conductivity of Moist Cellular Concrete - Experimental and Numerical Study. ASHRAE Thermal IX Conference, pp. 1-10.
  • [4] Isu N. et al., 2005. Mechanical Property Evolution during Autoclaving Process of Aerated Concrete Using Slag: II, Fracture Toughness and Microstructure. J. Am. Ceram. Soc. 77 (8), 2093-2096.
  • [5] Jacobs F., Mayer G., 1992. Porosity and permeability of autoclaved aerated concrete. Advan. in AAC, 3rd RILEM Intern. Symposium on AAC, Balkema, Rotterdam, pp. 71-75.
  • [6] Janz M., 2002. Moisture diffusivities evaluated at high moisture levels from a series of water absorption tests. Mater. Struct. 35 (3), 141-148.
  • [7] Kadashevich I. et al., 2005. Statistical modeling of the geometrical structure of the system of artificial air pores in autoclaved aerated concrete. Cem, Concr. Res. 35 (8), 1495-1502.
  • [8] Koronthályova O., 2011. Moisture storage capacity and microstructure of ceramic brick and autoclaved aerated concrete. Construct. Build. Mater. 25, 879-885.
  • [9] Kunhanandan Nambiar E.K., Ramamurthy K., 2007. Air-void characterization of foam concrete. Cem. Concr. Res. 37 (2), 221-230
  • [10] Maire E. et al., 2003. X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos. Sci. Tech. 63 (16), 2431-3443.
  • [11] Mitsuda T. et al., 1992. Influence of hydrothermal processing on the properties of autoclaved aerated concrete. Advan. in AAC, 3rd RILEM Intern. Symposium on AAC, Balkema, Rotterdam, pp. 11-18.
  • [12] Petrov I., Schlegel E., 1994. Application of automatic image analysis for the investigation of autoclaved aerated concrete structure. Cem. Concr. Res. 24 (5), 830-840.
  • [13] Prim P. Wittmann F.H., 1983. Structure and water absorption of aerated concrete, in: F.H. Wittmann (Ed.),Autoclaved Aerated Concrete, Moisture and Properties, Elsevier, Amsterdam, pp. 55-69.
  • [14] Schneider T. et al., 1999. Strength modeling of brittle materials with two- and three-dimensional pore structures. Comp. Mat. Sci. 16 (1-4), 98-103.
  • [15] Schober G., 1992. Effect of size distribution of air pores in AAC on compressive strength. Advan. in AAC, 3rd RILEM Intern. Symposium on AAC, Balkema, Rotterdam, pp. 77-80.
  • [16] Schober G., 2005. The most important aspects of microstructure influencing strength of AAC. Autoclaved Aerated Concrete - Innovation and Development, Taylor & Francis Group, London, pp. 145-153.
  • [17] Roels S. et al., 2002. Modelling unsaturated moisture transport in autoclaved aerated concrete; a microstructural approach. Proc. 6th Symp. on Build. Physics in the Nordic Countries. Vol. 1, 167-174.
  • [18] Tada S., 1986. Materiał design of aerated concrete - An optimum
  • [19] Tada S., 1992. Pore structure and moisture characteristics of porous inorganic building materials. Advan. in AAC, 3rd RILEM Intern. Symposium on AAC, Balkema, Rotterdam. pp. 53-63.
  • [20] Wagner F. et al., 1995. Measurement of the gas permeability of autoclaved aerated concrete in conjunction with its physical properties. Cem. Concr. Res. 25 (8) 1621-1626
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0076-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.