PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Termiczne przetwarzanie odpadów serpentynitowych w aspekcie utylizacji gazów cieplarnianych oraz produkcji reaktywnego MgO

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Thermal recycling of serpentine waste in aspect of GHG utilization and production of reactive MgO
Języki publikacji
PL
Abstrakty
PL
Celem artykułu jest przedstawienie możliwości zagospodarowania odpadów złożowych - skał serpentynitowo-perydotytowych z kopalni rudy magnezytowej "Braszowice". Specyficzną cechą wszystkich skał serpentynitowo-perydotytowych jest naturalna zdolność sorbowania CO2. W warunkach naturalnych proces ten jest bardzo powolny, natomiast w warunkach przemysłowych opracowano już technologie, które pozwalają na stosunkowo szybkie związanie CO2. W artykule przedstawiono studium literaturowe dotyczące krajowych i zagranicznych opracowań, w których podano przykłady sposobów przeróbki skał serpentynitowych stosowane na świecie. Celem stosowania tych nowych technologii jest: ograniczenie emisji gazów cieplarnianych do atmosfery poprzez związanie CO2 w węglanach magnezu, a SO3 i N w siarczanach magnezu i siarczanach amonowych.
EN
The purpose of this paper was the presentation of possibility to use the waste serpentynite-peridotite rocks from magnesite ore mine Braszowice. The serpentynite-peridotite rocks characterized with natural ability of absorption of CO2. In nature, this process is very slow, but in industrial conditions they made the technologies allow to let bound the greenhouses gases quickly. The paper presents the study of home and oversize bibliography about. The aim of use new technologies is double. The first is limitation of greenhouse gases emission by bound the CO2 in magnesium carbonates, sulphur and nitrogen by bound in magnesium and nitrogen sulphates.
Rocznik
Strony
91--104
Opis fizyczny
Bibliogr. 35 poz., il.
Twórcy
autor
  • Instytut Szkła, Ceramiki, Materiałów Ogniotrwałych i Budowlanych, Oddział Mineralnych Materiałów Budowlanych, Kraków
Bibliografia
  • [l] Bernier L. R., The potential use of serpentinite in the passive treatment of acid mine drainage: batch experiments, „Environmental Geology" 2005, Vol. 47, No 5, s. 670-684.
  • [2] Butt D. P., Lackner K. S., Wendt C. H., Conzone S. D., Kung H.,Lu Y-C., Bremser J., Kinetics of Thermal Dehydroxylation and Carbonation of Magnesium Hydroxide, „J. Am. Ceram. Soc." 1996, Vol. 79, s. 1882-1898.
  • [3] Butt D. P., Lackner K. S., Wendt C. H., Benjamin A., Currier R., Harradine D. M., Holesinger T. G., Park Y. S., M. Rising & K. Nomura, A Method for Permanent Disposal of Carbon Dioxide, to appear in World Resource Review. Los Alamos Report, LA-UR-97-1384, Butt D. P., Lackner K.S., Wendt C.H., et al, (1998), The kinetics of binding carbon dioxide in magnesium carbonate. 23. International conference on coal utilization and fuel systems, Clearwater, FL (USA), 9-13 Mar 1998. 9p.; 1997.
  • [4] Cosic M., Pavlovski B., Tkalcec E., Actwated Sintering of Magnesium Oxide Derived from Serpentine, „Reserved Source Journar 1989.
  • [5] O'Connor W.K., Dahlin D.C.,Nilsen D. N., Walters R.P.,Turner P. C., Carbon Dioxide Sequestration By Direct Mineral Carbonation: Results from Recent Studies and Current Status, „Technology" 2000, Vol. 7S.
  • [6] O'Connor W. K., Dahlin D. C., Nilsen D. N., Walters R.P.,Turner P. C., Carbon Dioxide Sequestration By Direct Mineral Carbonation With Carbonic Acid. Proc. of the 25th International Conference on Coal Utilization and Fuel Systems, Coal Technology Association, Clearwater, Florida 2000.
  • [7] O'Connor W. K., Dahlin D. C., Turner P. C., Walters R. P., Carbon Dioxide Sequestration by Ex-Situ Mineral Carbonation, „Technology" 2000, Vol. 7S, s. 115-123.
  • [8] Dahlin D.C., O’Connor W.K., Nilsen D. N., Rush G. E., Walters R.P., Turner P.C., A Method for Permanent CO2 Sequestration: Supercritical CO2 Mineral Carbonation. Proceedings of the 17th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 11-15 September 2000.
  • [9] O'Connor W.K. et al., Carbon dioxide Sequestration by direct mineral carbonation: results from recent studies and status, ibid. Carbon Dioxide Sequestration by Direct Mineral Carbonation with Carbonic Acid. Proceedings (2000). 25th International Technical Conference on Coal Utilization and Fuel Systems, Coal Technology Association, Clearwater, Florida 2000.
  • [10] Goff F., Guthrie G., Counce D., Kluk E., Bergfeld D., Snow M., Preliminary Investigations on the Carbon Dioxide Sequestering Potential of Ultramafic Rocks, Los Alamos, NM: Los Alamos National Laboratory; LA-13328-MS, 1997.
  • [11] Goff F., Lackner K. S., Carbon dioxide sequestering using ultramafic rocks, „Environmental Geosciences" 1998, Vol. 5, No 89-101.
  • [12] Goff F., Guthrie G., Field trip guide to serpentinite, silica-carbonate alteration, and related hydrothermal activity in the Clear Lake region, California. Los Alamos Nat. Lab., Report. LA-13607-MS, 1999.
  • [13] Goff F., Guthrie G. D., Lipin B., Fite M., Chipera S.J., Counce D. A., Kluk E., Ziock H., Evaluation of Ultramafic Deposits in the Eastern United States and Puerto Rico as Sources of Magnesium for Carbon Sequestration. Los Alamos Nat. Lab., Report. LA-13693-MS, 2000.
  • [14] Goff F., Guthrie G., Lipin B., Fite M., Chipera S.,Counce D., Kluk E., Ziock H., Evaluation of Ultramafic Deposits in the Eastern United States and Puerto Rico as Sources of Magnesium for Carbon Dioxide Sequestration. Los Alamos, NM: Los Alamos National Laboratory; LA-13694-MS, 2000.
  • [l5] Grill M., Graf G., Process for producing pure magnesium oxide. Patent WO/1988/01236; 1987.
  • [16] Kohlmann J., The removal of CO2 from flue gases using magnesium silicates, in Finland.. Report TKK-ENY-3, Helsinki University of Technology, Finland 2001.
  • [17] Kohlmann J., Zevenhoven R., The removal of CO2 from flue gases using magnesium silicates in Finland.; llth Int. Conf. on Coal Science (ICCS-11), San Francisco (CA), 29 Sept.-5Oct. 2001.
  • [18] Kohlmann J., Zevenhoven R., Mukherjee A. B, Carbon dioxide emission control by mineral carbonation; The option for Finland; INFUB 6th European Conference on Industrial Furnaces and Boilers Estoril Lisbon Portugal, April 2002.
  • [19] Lackner K. S., Wendt C. H., Butt D. P., Joyce E. L., Sharp D. H., Carbon dioxide disposal in carbonate minerals, „Energy" 1995, Vol. 20, s. 1153-1170.
  • [20] Lackner K. S., Butt D. P., Wendt C. H., Sharp D. H., Carbon Dioxide Disposal in Solid Form. The Proceedings of the 21st International Technical Conference on Coal Utilization & Fuel Systems, 18-21 March, 1996, Clearwater, Florida, U.S.A., s. 133-144, 1995.
  • [21] Lackner K. S., Butt D. P., Wendt C.H., Magnesite Disposal of Carbon Dioxide. Los Alamos, New Mexico: Los Alamos National Laboratory; LA-UR-97-660, 1997.
  • [22] Lackner K. S., Butt D. P., Wendt C.H., Progress on binding CO2 in mineral substrates, „Energy Conversion Management” 1997, Vol. 38, s. 259-264.
  • [23] Lackner K. S., Bu11 D. P., Wendt C. H., Magnesite Disposal of Carbon Dioxide. The Proceedings of the 22nd International Technical Conference on Coal Utilization & Fuel Systems, 16-19 March 1997, Clearwater, Florida 1997, s. 419-430.
  • [24] Lackner K. S., Butt D. P., Wendt C. H., Goff F., Guthrie G., Carbon Dioxide Disposal in Mineral Form: Keeping Coal Competitive. Los Alamos National Laboratory document LA-UR-97-2094, 1997.
  • [25] Lackner K. S., Butt D. P., Wendt C. H., Protecting the Future of Fossil Fuels Under Global Climate Constraints. Los Alamos National Laboratory document LAUR- 97-3180, 1997.
  • [26] Lackner K. S., Butt D. P., Wendt C.H., Binding Carbon Dioxide in Mineral Forme. A Critical Step Towards a Zero-Emission Coal Power Plant. Report, LA-UR-98-2237, 1998.
  • [27] Lackner K., Ziock H., et al, A review of emerging technologies for sustainable use of coal for power generation. Environmental issues and waste management in energy and mineral production, Calgary, Canada, 30.05-02.06.2000.
  • [28] Newa11 P.S., et al., CO2 storage as carbonate minerals. Report PH3/17 for IEA Greenhouse Gas; R&D Programme, Cornwall (UK) 2000.
  • [29] Noranda, The production of magnesium by Noranda. Magnola Metallurgy Inc., Quebec, Ca-nada2001.
  • [30] Taubert L., Hydrochloric attack of serpentinites: Mg2+ leaching from serpentinites, Romanian Academy Timisoara, Inorganic Chemistry Laboratory, 2004.
  • [31] Urbanek A., Kumanowski K., Marciniak L, Magnesium fertilizer from serpentinite. Politechnika Warszawska, PTR 12/79, 1979.
  • [32] Wendt C. H., Butt D. P., Lackner K. S., Ziock H.-J., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts, 1: description of concentrated MgCl2 melts. Los Alamos Nat. Lab., Report. LA-984528, 1998.
  • [33] Wendt C. H., Butt D. P., Lackner K. S., Ziock H.-J., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts, 2: reaction equilibria in MgCl2 melts. Los Alamos Nat. Lab., Report. LA-984529, 1998.
  • [34] Wendt C. H., Butt D. P., Lackner K. S., Vaidya R. U., Ziock H.-J., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts, 3: heat consumption in process design. Los Alamos Nat. Lab., Report, LA-985633, 1998.
  • [35] Zevenhoven R., Kohlmann J., Mukherjee A. B., Direct dry mineral carbonation for CO2 emissions reduction in Finland. accepted for presentation at the 27th Int. Tech. Conf. on Coal Utilization & Fuel Systems Clearwater (FL), 4-7 March, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0069-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.