PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optymalizacja numeryczna konstrukcji akumulatora energii cieplnej do współpracy z kolektorem słonecznym

Autorzy
Identyfikatory
Warianty tytułu
EN
Numerical optimization of construction battery heat to cooperate the solar collector
Języki publikacji
PL
Abstrakty
PL
Efektywność wykorzystania energii odnawialnej jest zależna od rozwiązania problemów z jej gromadzeniem i przesyłem, a tym samym z wyborem optymalnego akumulatora. W powyższej pracy skupiono się na optymalizacji numerycznej konstrukcji wytypowanych akumulatorów energii cieplnej do współpracy z kolektorem słonecznym. Ideą autorów jest opracowanie wstępnej koncepcji stosunkowo prostego w wykonaniu i taniego podpodłogowego akumulatora ciepła.
EN
Renewable energy efficiency is dependent on the solution of problems of its collection and transmission, and thus the choice of optimal battery construction. In this work focuses on numerical optimization of selected design of thermal energy storage for use with solar collector. Ideas of the authors is to develop a concept relatively easy to make and cheap battery underfloor heating.
Twórcy
autor
autor
autor
Bibliografia
  • [1]. Thirugnanasambandam M., Iniyan S., Goic R.; A review of solar thermal technologies, Renewable and Sustainable Energy Reviews 14 (2010) 312 - 322.
  • [2]. Bałys M.R., Buczek B.; Akumulacja ciepła w monolitach węglowych dla magazynowania energii - rozważania modelowe, Polityka energetyczna 12 (2009) 119-127.
  • [3]. Wita A., Balcerzak A., Mirosław-Świątek D.; System grzewczy z gruntowym akumulatorem energii cieplnej - wyniki eksperymentów, XIV Konferencja naukowa - metody komputerowe w projektowaniu i analizie konstrukcji hydrotechnicznych, Korbielów (2002) 229 -241.
  • [4]. Vaivudh S., Rakwichian W., Chindaruksa S.; Heat transfer of high thermal energy storage with heat exchanger for solar trough power plant, Energy Conversion and Management 49 (2008) 3311-3317.
  • [5]. Zheng D., Cao W.; Retrofitting for DME process by energy-flow framework diagram, Chemical Engineering and Processing 46 (2007) 2-9.
  • [6]. Schmidt T., Mangold D., Müller-Steinhagen H.; Central solar heating plants with seasonal storage in Germany, Solar Energy 76 (2004) 165-174.
  • [7]. Raab S., Mangold D., Müller-Steinhagen H.; Validation of a computer model for solar assisted district heating systems with seasonal hot water heat store, Solar Energy 79 (2005) 531-543.
  • [8]. Ming T., Liu W., Pan Y., Xu G.; Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer, Energy Conversion and Management 49 (2008) 2872-2879.
  • [9]. Pahud D.; Central solar heating plants with seasonal duct storage and short-term water storage: design guidelines obtained by dynamic system simulations, Solar Energy 69 (2000) 495-509.
  • [10]. Ohga H., Mikoda K., Energy performance of borehole thermal energy storage systems. Proceedings of Seventh International IBPSA Conference, Rio de Janeiro (2001) 1009-1016.
  • [11]. Lin M.C., Chun L.J., Lee W.S., Chen S.L.; Thermal performance of a two-phase thermosyphon energy storage system, Solar Energy 75 (2003) 295-306.
  • [12]. Denholm P., Kulcinski G.L.; Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems, Energy Conversion and Management 45 (2004) 2153-2172.
  • [13]. Ragoonanan V., Davidson J.H., Roman K.O., Mantell S.C.; The benefit of dividing an indirect thermal storage into two compartments: Discharge experiments, Solar Energy 80 (2006) 18-31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0062-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.