PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ wody morskiej na właściwości betonu z dodatkiem pyłu krzemionkowego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The effect of sea water on the properties of concrete with silica fume admixture
Języki publikacji
PL
Abstrakty
PL
Zbadano właściwości dwóch serii próbek betonowych z dodatkiem pyłu krzemionkowego, a otrzymanych z mieszanek zarabianych wodą morską lub wodociągową. Stwierdzono, że stosowanie wody morskiej nie wpływa ujemnie na właściwości mieszanek, a wręcz przyspiesza twardnienie betonu. Powoduje to wzrost wytrzymałości próbek, przy czym jest on największy z dodatkiem 15% pyłu krzemionkowego. Ten wzrost utrzymuje się do 90 dni, a więc do końca badań, przy czym po tym okresie jest mniejszy niż po 28 dniach.
EN
Two series of concrete samples with silica fume addition were produced from the mixtures with tap water or sea water, as mixing water. It was found that sea water has no harmful influence on the concrete mix properties, but increase the rate of concrete hardening. This caused the increase of concrete strength, which was observed till the end of measurements i.e. till 90 days. However the increase of strength after 90 days was smaller than after 28 days.
Czasopismo
Rocznik
Strony
22--30
Opis fizyczny
Bibliogr. 36 poz., il.
Twórcy
autor
autor
autor
  • Department of Civil Engineering, Kyrykkale University, Kyrykkale
Bibliografia
  • 1. T. S. Nagaraj, S. G. Shashiprakash, B. K. Raghuprasad, AGI Mater. J. 90, pp. 50-58, (1993).
  • 2. E. J. Garboczi, Computation materials science of cement-based materials. Materials Struces, 26:191-5, (1993).
  • 3. C. M. Aldea, F. Young, K. Wang, S. P. Shah, Effects of curing conditions on properties of concrete using slag replacement. Cement and Concrete Research; 30(3): 465^72, (2000).
  • 4. L. Bagel, Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cement and Concrete Research; 28(7): 1011-1022, (1998).
  • 5. L. Dongxue, F. Xinhua, W. Xuequan, T. Mingshu, Durability study of steel slag cement. Cement and Concrete Research; 27(7): 983-987, (1997).
  • 6. O. S. B. AI-Amoudi, M. Maslehuddin, M. A. Bader, Characteristics of silica fume and its impact on concrete in the Arabian Gulf. Concr Construc; 35(2):45-50,(2001).
  • 7. F. Massazza, Evaluation of cements and cementitious systems: history and prospects. Proceedings of the second international symposium on cement and concrete technology in the 2000s. Istanbul; 3-28, (2000).
  • 8. F. Akoz, F. Turker, S. Koral, N. Yuzer, Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume. Cement and Concrete Research; 29(4):537-44, (1999).
  • 9. J. Skalny, J. Marchand, l. Odler, Sulphate Attack On Concrete, London, (2002).
  • 10. P. K. Mehta, H. Haynes, Durability of Concrete In Seawater, Journal of the American Society of Civil Engineers Structural Division, 101, pp:1679-1686, (1975).
  • 11. S. Popovics, Concrete Materials: Properties, Specifications and Testing, p. 214, Noyes Publications, USA, (1992).
  • 12. Standard Specification for Design and Construction of Concrete Structures, Part 2 (Construction), 1st ed., Japan Society of Civil Engineers, Tokyo, Japan, 1986 (SP-2).
  • 13. T. U. Mohammed, T. Yamaji, A. Toshiyuki, H. Hamada, Marine durability of 15-year old concrete specimens made with ordinary Portland, slag and fly ash cement, ACI Spec. Publ. 199-30 2; 541-560, (2001).
  • 14. T. Fukute, H. Hamada, A study on the durability of concrete exposed in the marine environment for 20 years, Rep. Port Harb. Res. Inst. 31(5) 251-272, (1993).
  • 15. M. Uyan, Y. Akkaya, Effect of sea water used mixing water on concrete properties, Journal of Ready Mixed Concrete, The Turkish Ready Mixed Concrete Association, 2, 11, 80-84, (1995).
  • 16. S. Taban, O. Şimşek, The effect of zeolitic tuff addition ratio and sea water on physical and mechanical properties on cement, Journal Fac. Eng. Arch. Gazi Univ. Vol 24, No 1, 145-153, 2009.
  • 17. N. Yüzer, F. Aköz, The relation between tensile and compressive strengths of concrete exposed to chlorides, Technical Journal of Turkish Chamber of Civil Engineers, 16,4, 3673-3681, 2005.
  • 18. ASTM C33 Standard Specification for Concrete Aggregates.
  • 19. TS 3530 EN 933-1/A1 Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method, Turkish Standards Institution, (2007).
  • 20. TS EN 1097-6/A1 Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption, (2007).
  • 21. TS EN 1367-1 Tests for thermal and weathering properties of aggregates - Part 1: Determination of resistance to freezing and thawing, (2009).
  • 22. TS EN 206-1/A2 Concrete - Part 1: Specification performance, production and conformity, (2006).
  • 23. TS EN 12350-2 Testing fresh concrete- Part 2: Slump test, (2002).
  • 24. TS EN 12390-2 Testing hardened concrete - Part 2: Making and curing specimens for strength tests, (2002).
  • 25. TS 2941 Determination of unit weight, yield and air content of fresh concrete by weighting procedure, (1978).
  • 26. TS EN 12350-7 Testing fresh concrete- Part 7: Air content- Pressure methods, (2002).
  • 27. TS EN 12390-3 Testýng hardened concrete-Part 3:Compressýve strength of test specimens, (2003).
  • 28. TS EN 12390-6 Testing hardened concrete - Part 6: Tensile split strength fo test specimens, (2002).
  • 29. G. Appa Rao, "lnvestigations on the performance of silica fume-incorporated cement pastes and mortars", Cement and Concrete Research 33; 1765-1770, (2003).
  • 30. K. H. Khayat, P. C. Aitcin, Silica fume in concrete—an overview. ACI SP-132. 2; p. 835-72, (1992).
  • 31. Ch. F. Ferraris, F. de Larrard, N. Martys, Fresh Concrete Rheology; Recent Developments Materials Science of Concrete VI, Mindess & Skalny eds.,215(2001).
  • 32. T. U. Mohammed, H. Hamada, T. Yamaji, "Performance of seawater-mixed concrete in the tidal environment". Cement and Concrete Research 34; 593-601, (2004).
  • 33. M. P. Lorenzo, S. Goni, A. Guerrero, Role of Aluminous Component of Fly Ash on the Durability of Portland Cement-Fly Ash Pastes in Marine Environment, Waste Management; 23, 785-792, (2003).
  • 34. A. Guerrero, M. S. Herna'ndez, S. Gon i, The Role of The Fly Ash Pozzolanic Activity in Simulated Sulphate Radioactive Liquid Waste, Waste Management 20 (1), 51-58, (2000).
  • 35. P. K. Mehta, Effect of Fly Ash composition On the Sulfate Resistance of Cement, J. Am. Concr. Inst. 83 (6), 994-1000, (1986).
  • 36. S. Diamond, Hydraulic Cement Pastes: their structure and properties, Proc. Of Conf. at University of Sheffield, April 1976, p. 2, Cement and Concrete Ass., Wexham Springs 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0058-0104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.