PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FE-analysis of spacing of localized zones in reinforced concrete bars under tension using elasto-plasticity with non-local softening

Identyfikatory
Warianty tytułu
PL
Analiza MES rozstawu stref lokalizacji w rozciąganych żelbetowych prętach przy zastosowaniu sprężysto-plastyczności z nielokalnym osłabieniem
Języki publikacji
EN
Abstrakty
EN
The paper presents quasi-static 3D FE-simulations of strain localization in a reinforced concrete bar subjected to tension. The material was modeled with smeared continuum crack model using an elasto-plastic constitutive law. A Rankine criterion with isotropic softening and associated flow rule was adopted in a tensile regime of concrete. The behavior of reinforcement was described with an elasto-perfect plastic constitutive model. To ensure the mesh-independency, the model was enhanced in a softening regime by a non-local term to include a characteristic length of micro-structure. The FE-analyses were carried out with a different characteristic length, non-local parameter, reinforcement ratio, distribution of the tensile strength, bond between concrete and reinforcement, softening curve, softening rate and energy fracture.
PL
Artykuł przedstawia quasi-statyczne trójwymiarowe symulacje MES lokalizacji odkształceń w żelbetowym pręcie poddanym rozciąganiu. Materiał był wymodelowany przy zastosowaniu kontynualnego modelu rys rozmytych i sprężysto-plastycznego konstytutywnego prawa. Przyjęto w obszarze rozciągania betonu kryterium Rankine'a z izotropowym osłabieniem i stowarzyszonym prawem płynięcia. Zachowanie zbrojenia zasymulowano sprężysto-idealnie plastycznym modelem konstytutywnym. W celu otrzymania wyników niezależnych od siatki MES, model został rozszerzony w osłabieniu o nielokalny składnik umożliwiający uwzględnienie długości charakterystycznej mikrostruktury. Analizy MES zostały wykonane dla różnej długości charakterystycznej, nielokalnego parametru, procentu zbrojenia, rozkładu wytrzymałości betonu na rozciąganie, kontaktu między betonem a zbrojeniem, krzywej osłabienia, spadku osłabienia oraz energii pękania.
Twórcy
autor
autor
Bibliografia
  • 1. Abaqus, Theory Manual, Version 5.8, Hibbit, Karlsson & Sorensen Inc., 1998.
  • 2. Z. P. BAZANT, P. D. BHAT, Endochronic theory of inelasticity and failure of concrete, J. Engng. Mech. Div. ASCE, 102, 701-722, 1976.
  • 3. Z. P. BAZANT, L. CEDOLIN, Blunt crackband propagation in finite element analysis, J. Engng. Mech. Div. ASCE, 105, 2, 297-315, 1979.
  • 4. Z. BAZANT, J. OZBOLT, Non-local microplane model for fracture, damage and size effect in structures, J. Engng. Mech. ASCE, 116, 2485-2505, 1990.
  • 5. Z. BAZANT, J. PLANAS, Fracture and size effect in concrete and other quasi-brittle materials, CRC Press LLC, 1998.
  • 6. Z. P. BAZANT, M. JIRASEK, Nonlocal integral formulations of plasticity and damage: survey o fprogress, J. Engng. Mech., 128, 11, 1119-1149, 2002.
  • 7. J. BOBIŃSKI, J. TEJCHMAN, Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity, Computers and Concrete, 4, 433-455, 2004.
  • 8. J. BOBIŃSKI, J. TEJCHMAN, Modelling of size effects in concrete using elasto-plasticity with non-local softening, Archives of Civil Engineering, 52, l, 7-35, 2006.
  • 9. J. BOBIŃSKI, J. TEJCHMAN, Quasi-static crack propagation in concrete with cohesive elements under mixed-mode conditions, Proc. Int. Conf. WCCM 2008, Yenice 2008.
  • 10. R. DE BORST, H. -B. MUHLHAUS, J. PAMIN, L. SLUYS, Computational modelling of localization of deformation [In:] D. R. J. Owen, H. Onate, E. Hinton [Eds.] Proc. of the 3rd Int. Conf. Comp. Plasticity, Swansea, Pineridge Press, 483-508, 1992.
  • 11. R. DE BORST, J. PAMIN, M. GEERS, On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, Eur. J. Mech. A/Solids, 18, 6, 939-962, 1999.
  • 12. G. E. P. Box, M. E. MULLER, A note of the generation of random normal deviates, Annals. Math. Stat., V29, 610-611, 1958.
  • 13. R. B. BRINKGREVE, Geomaterial models and numerical analysis of softening, PhD thesis, Delft University of Technology, Delft, 1994.
  • 14. CEB-FIP "CEB-FIP Model Code 1990 for Concrete Structures', 228, 1-205, 1991.
  • 15. J. CHEN, H. YUAN, D. KALKHOF, A nonlocal damage model for elastoplastic materials based on gradient plasticity theory, Report Nr.01-13, Paul Scherrer Institut, 1-130, 2001.
  • 16. F. V. DONZE, S. A. MAGNIER, L. DAUDEVILLE, C. MARIOTTI, L. DAVENNE, Numerical study of compressive behaviour of concrete at high strain rates, Journal Engineering Mechanics, 1 154-1 163, 1999.
  • 17. K. DÖRR, Ein Beitrag zur Berechnung von Stahlbetonscheiben unter besonderer Berücksichtigung des Verbundverhaltens, PhD thesis, Darmstadt University, 1980.
  • 18. A. DRAGON, Z. MRÓZ, A continuum model for plastic-brittle behaviour of rock and concrete, Int. Journ. Eng. Science, 17, 1979.
  • 19. Eurocode 2 "Design of Concrete Structures, part 1-1", 1991.
  • 20. I. FERRARA, M. DI PRISCO, Mode I fracture behaviour in concrete: nonlocal damage modeling, ASCE Journal of Engineering Mechanics, 127, 7, 678-692, 2001.
  • 21. M. HASKETT, D. J. PEHLERS, M. S. Ali MOHAMED, Local and global bond characteristics of steel reinforcing bars, Engineering Structures, 30, 376-383, 2008.
  • 22. D. A. HORDIJK, Local approach to fatigue of concrete, PhD Thesis, Delft University of Technology, 1991.
  • 23. T. J. R. HUGHES, J. WINGET, Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis, International Journal for Numerical Methods in Engineering, 15, 1862-1867, 1980.
  • 24. J. KOZICKI, J. TEJCHMAN, Effect of aggregate structure on fracture process in concrete using 2D lattice model, Archives of Mechanics, 59, 4-5. 1-20, 2007.
  • 25. C. LE BELLEGO, J. F. DUBE, G. PIJAUDIER-CABOT, B. GERARD, Calibration of nonlocal damage model from size effect tests, E. J. Mechanics A/Solids, 22, 33-46, 2003.
  • 26. T. ŁODYGOWSKI, P. PERZYNA, Numerical modelling of localized fracture of inelastic solids in dynamic loading process, Int. J. Num. Meth. Eng., 40, 22, 4137-4158, 1997.
  • 27. M. LORRAIN, O. MAUREL, M. SEFFO, Cracking behaviour of reinforced high-strength concrete tension ties, ACI Structural Journal, 95, 5, 626-635, 1998.
  • 28. R. MAHNKEN, E. KUHL, Parameter Identification of gradient enhanced damage models, Eur. J. Mech. A/Solids, 18, 819-835, 1999.
  • 29. T. MAJEWSKI, J. BOBIŃSKI, J. TEJCHMAN, FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression, Engineering Structures, 30, 2, 300-317, 2008.
  • 30. T. MALECKI, I. MARZEC, J. BOBIŃSKI, J. TEJCHMAN, Effect of a characteristic length on crack sparing in a reinforced concrete bar under tension, Mechanics Research Communications, 34, 5-6, 460-465, 2007.
  • 31. I. MARZEC, J. BOBIŃSKI, J. TEJCHMAN, Simulations of crack sparing in reinforced concrete beams using elastic-plasticity and damage with non-local softening, Computers and Concrete, 4, 5, 377-403, 2007.
  • 32. P. MENETREY, K. J. WILLAM, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 311-318, 1995.
  • 33. H.-B. MÜHLHAUS, Scherfugenanalyse bei Granularen Material im Rahmen der Cosserat-Theorie, Ingen. Archiv, 56, 389-399, 1986.
  • 34. A. NEDDLEMAN, Material rate dependence and mesh sensitivity in localization problems, Comp. Meths. Appl. Mech. Eng., 67, 69-85, 1988.
  • 35. J. OLIVER, A. E. HUESPE, P. J. SANCHEZ, A comparative study on finite element s for capturing strong discontinuities: E-FEM vs X-FEM, Computer Methods in Applied Mechanics and Engineering, 195, 4732-4752, 2006.
  • 36. M. ORTIZ, I. C. SIMO, An analysis of a new class of integration algorithms foe elastoplastic constitutive relation, Int. I, Num. Methods in Engng., 23, 353-366, 1986.
  • 37. R. PALANISWAMY, S. P. SHAH, Fracture and stress-strain relationship of concrete under triaxial compression, J. Struct. Div. ASCE, 100, 901-916, 1974.
  • 38. J. PAMIN, R. DE BORST, Simulation of crack sparing using a reinforced concrete model with an internal length parameter, Arch. App. Mech., 68, 9, 613-625, 1998.
  • 39. J. PAMIN, R. DE BORST, Stiffness degradation in gradient-dependent coupled damage-plasticity, Arch. Mech., 51, 3-4, 419-446, 1999.
  • 40. G. PIJAUDIER-CABOT, Z. P. BAZANT, Nonlocal damage theory, ASCE J. Eng. Mech., 113, 1512-1533, 1987.
  • 41. H. J. PEERLINGS, R. DE BORST, W. A. M. BREKELMANS, M. G. D. GEERS, Gradient enhanced damage modelling of concrete fracture, Mech. Cohesion.-Friction. Materials, 3, 323-342, 1998.
  • 42. D. PIETRUSZCZAK, J. JiANG, F. A. MIRZA, An elastoplastic constitutve model for concrete, Int. J. Solids Structures, 24, 7, 705-722, 1988.
  • 43. E. SCHLANGEN, E. J. GARBOCZi, Fracture simulations of concrete using lattice models: computational aspects, Engineering Fracture Mechanics, 57, 319-332, 1997.
  • 44. L. J. SLUYS, R. DE BORST, Failure in plain and reinforced concrete - an analysis of crack width and crack sparing, Int. J. Solids Structures, 33, 20-22, 3257-3276, 1996.
  • 45. J. TEJCHMAN, W. Wu, Numerical study on patterning of shear bands in a Cosserat continuum, Acta Mechanica, 99, 61-74, 1993.
  • 46. J. TEJCHMAN, J. GÓRSKI, Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity, Int. Journal for Numerical and Analytical Methods in Geomechanics, 32, l, 81-107, 2008.
  • 47. J. A. DEN UIJL, A. BIGAJ, A bond model for ribbed bars based on concrete confinement, Heron, 41, 201-226, 1996.
  • 48. J. C. WALRAVEN. The influence of depth on the shear strength of lightweight concrete beams without shear reinforcement, TU-Delft Report 5-78-4, Delft University, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0054-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.