PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ wysokich temperatur na mechaniczne i cieplne właściwości kompozytów cementowych zbrojonych włóknami węglowymi

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effect of high temperatures on mechanical and thermal properties of carbon-fiber reinforced cement composite
Języki publikacji
PL
Abstrakty
PL
Zmierzono dyfuzję ciepła, ciepło właściwe, przewodnictwo cieplne i współczynnik liniowej rozszerzalności cieplnej lekkiego, zbrojonego włóknami węglowymi kompozytu cementowego w funkcji temperatury w zakresie do 1000°C. Badaniami objęto także podstawowe właściwości fizyczne oraz wytrzymałość na rozrywanie i zginanie. Wyniki doświadczalne pokazują, że praktyczny zakres stosowania tego materiału powinien być ograniczony do temperatur poniżej 700°C. W wyższych od 700°C temperaturach pogorszenie właściwości mechanicznych jest bardzo duże, materiał wykazuje znaczny skurcz i wzrost dyfuzji cieplnej.
EN
The thermal diffusivity, specific heat capacity, thermal conductivity and linear thermal expansion coefficient of lightweight carbon-fiber reinforced cement composite are measured as functions of temperature up to 1000°C. Basic physical parameters and tensile and bending strengths are analyzed as well. Experimental results show that the practical applicability of the studied material is limited to the temperatures below 700°C. At higher temperatures than 700°C, the decrease of mechanical properties is very significant, the material undergoes remarkable contraction and the increase of thermal diffusivity is very pronounced.
Czasopismo
Rocznik
Strony
66--74
Opis fizyczny
Bibliogr. 20 poz., il.
Twórcy
autor
autor
autor
  • Czech Technical University in Prague, Faculty of Civil Engineering, Department of Materials Engineering and Chemistry, Czech Republic
Bibliografia
  • 1. Y. Ohama, M. Amano, M. Endo, Properties of Carbon Fiber Reinforced Cement with Silica Fume. Concrete International: Design and Construction, vol. 7, pp. 58-62(1985).
  • 2. Y. Ohama, Carbon-cement composites. Carbon, vol. 27, pp. 729-737 (1989).
  • 3. A. Briggs, Carbon Fibre-Reinforced Cement. Journal of Materials Science, vol. 12, pp. 384-403 (1977).
  • 4. D.D.L. Chung, Cement reinforced with short carbon fibers: a multifunctional material. Composites: Part B, vol. 31, pp. 511-526 (2000).
  • 5. S. Wen, D.D.L. Chung, Cement-based materials for stress sensing by dielectric measurement. Cement and Concrete Research, vol. 32, pp. 1429-1433(2002).
  • 6. Z. Q. Shi, D.D.L. Chung, Carbon-fiber reinforced concrete for traffic monitoring and weighing in motion. Cement and Concrete Research, vol. 29, pp. 435-439 (1999).
  • 7. X. Fu, D.D.L. Chung, Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cement and Concrete Research, vol. 26, pp. 15-20 (1996).
  • 8. S. Wen, D.D.L. Chung, Piezoresistivity in continuous carbon fiber cement matrix composite. Cement and Concrete Research, vol. 29, pp. 445-449(1999).
  • 9. S. R. Zhu, D.D.L. Chung, Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. Journal of Materials Science, vol. 42, pp. 6222-6233 (2007).
  • 10. M. Sun, Z. Li, Q. Mao, D. Shen, A study on thermal self-monitoring of carbon fiber reinforced concrete. Cement and Concrete Research, vol. 29, pp. 769-771 (1999).
  • 11. S. Wen, D.D.L. Chung, Cement-based thermocouples. Cement and Concrete Research, vol. 31, pp. 507-510 (2001).
  • 12. D.D.L. Chung, Cement reinforced with short carbon fibers: a multifunctional material. Composites: Part B, vol. 31, pp. 511-526 (2000).
  • 13. J. Drchalová, E. Mňahončáková, R. Vejmelka, J. Kolísko, P. Bayer, R. Černý, Hydric and Mechanical Properties of Carbon Fiber Reinforced Cement Composites Subjected to Thermal Load. Construction and Building Materials, vol. 18, pp. 567-578 (2004).
  • 14. E. Mňahončáková, R. Vejmelka, M. Jiřičková, P. Rovnaníková, P. Bayer, R. Černý, Thermal and hygric parameters of carbon fiber reinforced cement composites after thermal and mechanical loading. Journal of Building Physics, vol. 29, pp. 121-143 (2005).
  • 15. R. Černý, J. Nĕmeákova, P. Rovnaníková, P. Bayer, Effect of thermal decomposition processes on the thermal properties of carbon fiber reinforced cement composites in high-temperature range. Journal of Thermal Analysis and Calorimetry, vol. 90, pp. 475-488 (2007).
  • 16. S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science, vol. 27, pp. 307-325 (2004).
  • 17. J. Drchalová, R. Černý, Non-Steady-State Methods for Determining the Moisture Diffusivity of Porous Materials. Int. Comm. Heat and Mass Transfer, vol. 25, pp. 109-116 (1998).
  • 18. L. Zuda, P. Rovnaník, P. Bayer, Černý R., Thermal Properties of Alkali Activated Slag with Electrical Porcelain Aggregates at High Temperatures. Cement Wapno Beton, vol. 12/74, pp. 179-186 (2007).
  • 19. J. Toman, R. Černý, High-Temperature Measurement of the Specific Heat of Building Materials. High Temp.- High. Press., vol. 25, pp. 643-647 (1993).
  • 20. J. Toman, P. Koudelová, R. Černý, A Measuring Method for the Determination of Linear Thermal Expansion of Porous Materials at High Temperatures. High Temp.-High Press., vol. 31, pp. 595-600 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0044-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.