Alfred Szczygielski* Ryszard Mazurczuk**

BADANIA DOŚWIADCZALNE I WERYFIKACJA OBLICZENIOWA CZĘŚCIOWO SPRĘŻONYCH ŻERDZI WIROWANYCH NA SKRĘCANIE POŁĄCZONE ZE ZGINANIEM I ŚCINANIEM

W artykule przedstawiono opis stanowiska do badań oraz wyniki badań częściowo sprężonych żerdzi wirowanych o stałej zbieżności przekroju 1,5 cm/m na skręcanie połączone ze zginaniem i ścinaniem. Podano także ogólne zasady obliczania nośności tego typu żerdzi na skręcanie połączone ze zginaniem i ścinaniem.

1. Wprowadzenie

W projekcie normy [1] dotyczącej prefabrykowanych betonowych słupów i masztów podano dwa sposoby weryfikacji wytrzymałości słupów na skręcanie i zginanie: za pomocą obliczeń – jeżeli istnieje udokumentowana metoda obliczeń – oraz za pomocą obliczeń wspomaganych badaniami na czyste skręcanie i oddzielnie na zginanie.

W przypadku słupów linii elektroenergetycznych w wyjątkowych warunkach pracy mogą wystąpić zakłócenia polegające na zerwaniu jednego przewodu lub zakłócenia w trakcie montażu linii.

W wyjątkowych warunkach pracy słupy mocne (krańcowe, odporowe, narożne) są narażone na skręcanie połączone ze zginaniem i ścinaniem. W normach [2, 3] dotyczących obliczania konstrukcji żelbetowych i sprężonych problem skręcania połączonego ze zginaniem i ścinaniem nie jest uwzględniony.

Przyjęcie zasady oddzielnego obliczania zbrojenia na moment zginający i moment skręcający jest możliwe tylko przy założeniu, że jedno obciążenie w porównaniu z drugim odgrywa drugorzędną rolę. W ogólnym przypadku pomiędzy nośnością na skręcanie i zginanie istnieją wzajemne zależności, które należy uwzględniać przy projektowaniu [4]. Przykładem odgrywania równorzędnej roli przez oba rodzaje obciążenia są słupy linii elektroenergetycznych.

^{*} doc. dr inż. – Zakład Konstrukcji i Badań Wytrzymałościowych ITB

^{**} inż. - st. specjalista w Zakładzie jw.

W tej sytuacji podjęto próbę sformułowania zasad obliczania częściowo sprężonych żerdzi wirowanych na skręcanie połączone ze zginaniem i ścinaniem na podstawie badań doświadczalnych przeprowadzonych na elementach w skali naturalnej.

Przyjęte w pracy zasady obliczeń mogą odnosić się wyłącznie do żerdzi określonego typu, spełniających następujące warunki:

 żerdzie są częściowo sprężone, tzn. są dozbrojone prętami pasywnymi ze stali zwykłej,

- brak zbrojenia poprzecznego na skręcanie,
- sprężenie jest osiowe (w żerdziach zawsze spełnione),
- beton w żerdziach jest formowany i zagęszczany przez wirowanie,
- klasa betonu ≥ B50.

Pierwsze badania weryfikacyjne żerdzi wirowanych na skręcanie połączone ze zginaniem zostały wykonane w Laboratorium Instytutu Budownictwa Politechniki Wrocławskiej w latach 1990–1993 [5]. W badaniach tych (a także późniejszych) stwierdzono, że użytkową nośność żerdzi wirowanych na skręcanie połączone ze zginaniem zapewnia zbrojenie sprężające i pasywne oraz wysoka wytrzymałość betonu (B50).

2. Cel i zakres pracy

Celem pracy było określenie zasad obliczania nośności sprężonych żerdzi wirowanych na skręcanie połączone ze zginaniem i ścinaniem na podstawie badań doświadczalnych przeprowadzonych w laboratorium ITB. Badania te przeprowadzono na dwóch słupach częściowo sprężonych, pochodzących z przemysłowej wytwórni strunobetonowych żerdzi wirowanych. Stanowisko badawcze wykonano według projektu opracowanego w Zakładzie Konstrukcji i Badań Wytrzymałościowych.

3. Przyjęte oznaczenia

Przyjęte oznaczenia są zgodne z normą [2]. Oznaczenia dodatkowe są następujące:

M_{Rm} – nośność przekroju sprężonego na zginanie obliczona dla średniej wytrzymałości betonu i stali,

T_{Rm} – nośność przekroju sprężonego na czyste skręcanie obliczona dla średniej wytrzymałości betonu na rozciąganie,

 T_{sm} – moment skręcający niszczący w przekroju sprężonym wywołany skręcaniem połączonym ze zginaniem oraz ścinaniem,

 W_{ct} – wskaźnik wytrzymałości przekroju betonowego na skręcanie obliczony dla materiału liniowo sprężystego,

w – wysięg poprzecznika słupa,

σ_M- naprężenia w przekroju wywołane momentem zginającym,

σ_{cp} – naprężenia w przekroju wywołane sprężeniem po stratach.

4. Opis badanych żerdzi

Do badań przeznaczono dwie identyczne żerdzie częściowo sprężone typu EM 12/20 (tzw. żerdzie mocne) zaprojektowane na zastępczą siłę wierzchołkową $P_k = 20$ kN, przyłożoną w odległości 0,2 m od wierzchołka.

Projekt żerdzi został wykonany w Instytucie Budownictwa Politechniki Wrocławskiej [6].

Dane dotyczące geometrii żerdzi, zbrojenia podłużnego zwykłego i sprężającego oraz zbrojenia poprzecznego w postaci jednokierunkowej spirali wykonanej z drutu Ø 3,5 mm o skoku 0,1 m przedstawiono na rysunku 1.

Istniejące zbrojenie poprzeczne ma głównie znaczenie montażowe (również przeciwskurczowe i przenoszące naprężenia termiczne). Żerdzie mocne zaprojektowane zostały na normalne warunki pracy, tzn. głównie na obciążenie poziome wywołujące zginanie [7]. Każdorazowo jednak badaniami doświadczalnymi potwierdzano konieczną nośność na skręcanie przy wprowadzaniu nowego wyrobu do produkcji masowej.

Na rysunku 2 przedstawiono wykres obliczeniowych momentów zginających od zastępczej siły wierzchołkowej 1,3 P_k oraz obwiednię nośności na zginanie żerdzi EM12/20.

5. Charakterystyka stanowiska badawczego

Stanowisko do badania nośności na skręcanie połączone ze zginaniem częściowo sprężonych żerdzi wirowanych zbudowane w hali laboratoryjnej Zakładu Konstrukcji i Badań Wytrzymałościowych ITB, składa się z z następujących elementów:

podpór mocowanych do płyty stendu umożliwiających kotwienie słupa w pozycji poziomej,

zespołu wieszaków służącego do kompensacji ciężaru własnego żerdzi za pomocą obciążników stalowych,

 systemu obciążania dwoma siłownikami typu INSTRON umożliwiającymi jednoczesne skręcanie, zginanie i ścinanie żerdzi.

Szczegóły realizacji obciążenia momentem zginającym i momentem skręcającym przedstawiono na rysunku 3, a widok stanowiska badawczego na stendzie – na rysunku 4.

Pomiar ugięć wierzchołka żerdzi (z dokładnością \pm 0,1 mm) był realizowany za pomocą indukcyjnego czujnika LVDT.

Kąt skręcenia wierzchołka żerdzi mierzono pośrednio poprzez obliczenie różnicy wskazań czujnika LVDT siłownika w osi żerdzi i wskazań czujnika LVDT siłownika usytuowanego na ramieniu w = 1,5 m. Podatność liniową i kątową w strefie zakotwienia żerdzi mierzono czujnikami LVDT. Wyniki te zostały uwzględnione przy ocenie ugięć i kątów skręcenia żerdzi.

Wszystkie czujniki, zarówno sił, jak i przemieszczeń, mają system rejestracji wskazań z dowolnie ustawianą częstotliwością pomiarów.

Rys. 1. Żerdź wirowana EM/12/20 według projektu technicznego [6] Fig. 1. Spun concrete pole type EM/12/20 according to the design [6]

H, m wykres momentów obliczeniowych od zastępczej siły wierzchołkowej 12,00 11,80 $\gamma_f \cdot P_k$, gdzie γ_f = 1,3, P_k = 20 kN 11,60 51,18 obwiednia nośności elementu wykres momentów obliczeniowych w fazie podnoszenia elementu podwieszonego w środku ciężkości $(\gamma_f = 1, 2)$ wykres momentów obliczeniowych w fazie składowania przy założeniu 8,9 91,73 (96,0) podparcia na końcach ($\gamma_f = 1,2$) 1 1 125,76 (135,0) 7,61 7.00 165,76 (178,04) 6,31 1 39,94 5,55 38,51 5,07 39.68 207,38 (228,0) 5,01 ΕI 12,0 /= 7,5 m /= 9,0 m 5 # 14 / = 4,5 m I = 6,0 m1 2'2 5 # 14 5 # 14 5 # 14 0 255,68 (278,6) 254,80 2,00 20 1,49 1,29 1,09 0,89 -0,40 0 0,8 0'0 4.0 M, kNm

EM12/20

Rys. 2. Obwiednia nośności na zginanie żerdzi EM/12/20 według projektu [6] Fig. 2. Envelope of bending capacity of the pole type EM/12/20 according to the design [6]

100

150

200

250

50

29

Rys. 3. Szczegóły realizacji obciążenia momentem zginającym i momentem skręcającym Fig. 3. Details of loading equipment for bending and torsion

Rys. 4. Widok stanowiska badawczego na stendzie Fig. 4. The view of the testing rig

6. Program i wyniki badań

Przeprowadzono badania doświadczalne dwóch identycznych żerdzi mocnych o długości całkowitej 12 m i charakterystycznej sile wierzchołkowej $P_k = 20$ kN. Żerdzie zostały zaprojektowane na zginanie z przeznaczeniem do normalnych warunków pracy przy współczynniku obciążenia $\gamma_f = 1,3$. Wykonano sześć kolejnych badań, które miały na celu określenie wpływu stosunku M/T w różnym stanie zarysowania (rysy normalne i ukośne) na nośność żerdzi obciążonych jednocześnie momentem skręcającym, zginającym i siłą poprzeczną.

Żerdź nr 1

Badanie nr 1. Żerdź oznaczoną numerem 1 zbadano na zginanie siłą przyłożoną w osi żerdzi w odległości 0,2 m od wierzchołka. Obciążenie zwiększano ze stałą szybkością do wartości P= 25 kN, tj. 1,25 P_k Przy tym obciążeniu zarysowanie żerdzi stwierdzono na długości 6,8 m, licząc od podpory. Po zarysowaniu żerdź odciążono. Badanie miało na celu porównanie ugięć z badań i obliczeń. Wykres zależności siła wierzchołkowaugięcie pokazano na rysunku 5.

Badanie nr 2. Żerdź nr 1 po odciążeniu została zbadana na skręcanie połączone ze zginaniem według schematu obciążenia, w którym moment skręcający i moment zginający przekazywany był na żerdź za pomocą stalowego poprzecznika o wysięgu 1,5 m połączonego z żerdzią w odległości 0,21 m od wierzchołka.

Rys. 5. Wykres ugięcia wierzchołka żerdzi w badaniach nr 1, nr 2 i nr 3 Fig. 5. Deflection of the pole top for the test No 1, 2 and 3

Rys. 6. Wykres kąta skręcenia wierzchołka żerdzi w badaniach nr 2 i nr 3 Fig. 6. Angle of torsion of the pole top for the test No 2 and 3

Rys. 7. Sposób i miejsce zniszczenia – badanie nr 2 Fig. 7. Manner and place of destruction of the pole – test No 2

Ze względu na przyjęty sposób pomiaru kąta skręcenia zamontowano drugi siłownik na wierzchołku żerdzi, który pozwalał na pomiar ugięcia w miejscu zamocowania poprzecznika do żerdzi (rys. 3 i 10a). Jako ugięcie bazowe przyjęto ugięcie siłą zginającą o wartości 1 kN. Wyniki pomiaru ugięcia i kąta skręcenia wierzchołka żerdzi przedstawiono na rysunkach 5 i 6. Zniszczenie żerdzi nastąpiło w strefie odległej 0,4 m – 1 m od wierzchołka (rys.7), tj. poza zasięgiem rys normalnych w badaniu nr 1. W chwili zniszczenia siła zginająca żerdź wynosiła $F_{zg} + F'_{zg} = 17,15 + 1 = 18,15$ kN, a moment skręcający $T_{Sm} = 17,15 + 1,5 = 25,725$ kNm. Sposób i miejsce zniszczenia żerdzi przedstawiono na rysunku 7.

Badanie nr 5. Przedmiotem badania była ponownie żerdź nr 1. W stosunku do badania nr 2 przesunięto w kierunku nasady żerdzi miejsce zamocowania poprzecznika oraz zastosowano dwie siły, które zwiększano jednocześnie (rys. 10b). Badanie przerwano w chwili, kiedy obciążenie wynosiło: $F_{zg} = 20 + 20 = 40$ kN, a moment skręcający $T_S = 20 \cdot 1,5 = 30$ kNm. Widok rys na powierzchni żerdzi pokazano na rysunku 8. Widać, że rysy ukośne w większości przecinają rysy normalne, a część rys ukośnych jest rozwinięciem rys normalnych.

Badanie nr 6. Po odciążeniu żerdź nr 1 była badana według schematu obciążenia, jak w badaniu nr 2, tzn. obciążenie realizowano jedną siłą wywołującą jednocześnie skręcanie i zginanie (rys.10c). Zniszczenie żerdzi nastąpiło w przekroju ukośnym w strefie 3 m – 3,6 m od wierzchołka. Obciążenie niszczące wynosiło F_{zg} = 22 kN; T_{Sm} = 22 · 1,5 = 33 kNm. Widok zniszczenia żerdzi na skręcanie pokazano na rysunku 9. Przebieg rys ukośnych i normalnych podobny, jak w badaniu nr 5.

Rys. 8. Zarysowanie żerdzi poddanej skręcaniu, zginaniu i ścinaniu – badanie nr 5 iFg. 8. Cracking pattern of the pole subjected to torsion, bending and shear – test No 5

Rys. 9. Zniszczenie 2,66 m od wierzchołka żerdzi – badanie nr 6 Fig. 9. Manner of destruction 2,66 m from the top – test No 6 Zrealizowane schematy obciążeń żerdzi przedstawiono na rysunku 10.

Rys. 10. Schematy obciążeń w badaniach na skręcanie połączone ze zginaniem: a – badanie nr 2 i 3, b – badanie nr 4 i 5, c – badanie nr 6 Fig. 10. Loading schemes in combined torsion and bending tests: a – tests 2 and 3, b – tests 4 and 5, c – test 6

Żerdź nr 2

Badanie nr 3. Przedmiotem badania była żerdź nr 2. Schemat i procedura badań były identyczne jak w badaniu nr 2. Zniszczenie żerdzi nastąpiło w przekroju ukośnym w odległości 0,4 m ÷ 1 m od wierzchołka. W chwili zniszczenia siła zginająca wynosiła $F_{zg} = 18,54 + 1 = 19,54$ kN, a moment skręcający doś $T_S = 18,54 \cdot 1,5 = 27,81$ kNm.

Badanie nr 4. W stosunku do badania nr 3 zmieniono miejsce zamocowania poprzecznika oraz zamiast jednej siły wprowadzono dwie siły, które zwiększano jednocześnie.

Pierwszą siłę *F* przyłożono w osi żerdzi w odległości 1,5 m od wierzchołka, a drugą siłę *F_{sk}* na ramieniu 1,5 m – w odległości 1,7 m od wierzchołka. Z uwagi na niebezpieczeństwo zniszczenia aparatury badawczej obciążenie przerwano, kiedy rozwarcie rys wskazywało na możliwość nagłego zniszczenia żerdzi. Badanie przerwano przy sile *F* = 19 kN. Obciążenie zginające żerdzi wynosiło *F_{zg}* = 2 · 19,0 = 38 kN, a moment skręcający doś *T_S* = 1,5 *F* = 1,5 · 19 = 28,5 kNm.

Widok rys w końcowej fazie obciążania pokazano na rysunku 11 i 12. Stwierdzono, że kąt nachylenia rys ukośnych zwiększał się wraz ze wzrostem odległości przekroju od miejsca przyłożenia obciążenia. W strefie przypodporowej rysy miały charakter rys zbliżonych do normalnych.

do zamocowania

Rys. 11. Zarysowanie 2,94 m od wierzchołka żerdzi – badanie nr 4 Fig. 11. Manner of cracking 2,94 m from the top – test No 4

do zamocowania

Rys. 12. Zarysowanie żerdzi w pobliżu podpory – badanie nr 4 Fig. 12. Manner of cracking close to the support – test No 4

7. Weryfikacja metodyki badań

Sprawdzenia metodyki badania na zginanie dokonano przez porównanie zmierzonego i obliczonego ugięcia wywołanego obciążeniem w zakresie pracy sprężystej żerdzi.

Ugięcie wierzchołka żerdzi obciążonej siłą *F* obliczono według wzoru (1) wyprowadzonego metodą momentów wtórnych.

$$a = \frac{F \, 1^3}{3E_{cm} \, l_n \, n^3} \sum_{i=1}^{i=n} \, \lambda_i \, (3i^2 - 3i + 1)$$

Momenty bezwładności oraz wspólczynniki λ_i (3 i^2 - 3i + 1) zestawiono w tablicy 1.

(1)

$$\sum_{i=1}^{i=n} \lambda_i (3i^2 - 3i + 1) = 1460,1374$$

Po podstawieniach otrzymano

$$a = \frac{F9,8^3 \cdot 1,460}{(3 \cdot 38600) \cdot (1,23063 \cdot 10^{-3})} = 9,6426 F, mm$$

gdzie Fw kN, 1 w m,

przy $F = 10 \text{ kN} \rightarrow a = 96,4 \text{ mm},$

przy $F = 20 \text{ kN} \rightarrow a = 192,8 \text{ mm}.$

Ugięcia według badań i obliczeń przedstawiono na wykresie (rys. 5).

Ze względu na dużą zgodność ugięć zmierzonych i obliczonych żerdzi niezarysowanej można przyjąć, że metodyka badań na zginanie została sprawdzona.

Sprawdzenia metodyki badania na skręcanie połączone z jednoczesnym zginaniem dokonano przez porównanie zmierzonego i obliczonego kąta skręcenia wywołanego obciążeniem w zakresie sprężystej pracy żerdzi.

Kąt skręcenia wierzchołka żerdzi obliczono według wzoru

$$\varphi = \frac{T \, 1}{G_{\rm cm} \, I_{01} \, n} \sum_{i=1}^{i=n} \frac{I_{01}}{I_{0n}} \tag{2}$$

gdzie: Io - biegunowy moment bezwładności,

n = 10: liczba odcinków (podział przyjęty do obliczeń),

 $G_{\rm cm} = 0.4 E_{\rm cm}$

Obliczony współczynnik
$$\sum_{i=1}^{i=n} \frac{I_{01}}{I_{0n}} = 4,8934$$

$$\varphi = \frac{T \cdot 10 \cdot 4,8934}{15440 \cdot 10^3 \cdot 4,996 \cdot 10^{-4} \cdot 10} 0,000634T, \text{ rd}$$

przy $T = 5 \text{ kNm} \rightarrow \phi = 0,00317 \text{ rd} \rightarrow \phi \approx 0,18^{\circ}$, przy $T = 10 \text{ kNm} \rightarrow \phi = 0,00634 \text{ rd} \rightarrow \phi \approx 0,36^{\circ}$. Kąty skręcenia według badań i obliczeń przedstawiono na rysunku 6.

Television in the second second second						
Numer odcinka żerdzi	D _i m	d _i m _i	$I_i = \frac{\pi}{64} (D_i^4 - d_i^4)$	$\lambda_i = \frac{I_n}{I_i} = \frac{I_{10}}{I_i}$	$3i^2 - 3i + 1$	$\lambda_i (3i^3 - 3i + 1)$
1	0,2705	0,1276	2,496 · 10 ⁻⁴	4,926459	1	4,926453
2	0,2855	0,1368	3,10401 · 10-4	3,978105	7	2,7846734
3	0,3005	0,1460	3,77963 · 10 ⁻⁴	3,5131717	19	66,750262
4	0,3155	0,1552	4,5789 · 10 ⁻⁴	2,687607	37	99,441467
5	0,3305	0,1646	5,4964 · 10 ⁴	2,238976	61	136,57751
6	0,3455	0,1738	6,5467 · 10 ⁻⁴	1,879777	91	171,0597
7	0,3605	0,1831	7,7389 · 10 ⁻⁴	1,5901749	127	201,95221
8	0,3755	0,1922	9,08924 · 10 ⁻⁴	1,353942	169	228,81625
9	0,3905	0,2014	10,0681 · 10 ⁻⁴	1,1602267	217	251,7692
10	0,4055	0,2106	12,3063 · 10-4	1	271	271,0
					Σ =	1460,1374

Tablica 1. Momenty bezwładności oraz współczynniki Table 1. Moments of inertia and factors $\lambda_{-}(3i^2 - 3i + 1)$

Ze względu na zgodność kątów skręcenia pomierzonych i obliczonych dla żerdzi niezarysowanej można przyjąć, że metodyka badań na skręcanie połączone ze zginaniem została sprawdzona.

8. Analiza wyników badań

Badanie nr 1, żerdź nr 1 (zginanie)

Badanie wstępne na zginanie miało na celu wywołanie rys, które występują w normalnych warunkach pracy żerdzi. W badaniach obciążenie użytkowe (γ_f =1) zwiększono o 25%, tj. do 25 kN.

Moment rysujący według pracy [8] obliczono ze wzoru

$$M_{cr} = W_{cs} \left(\sigma_{cp} + 2 f_{ctm}\right) \tag{3}$$

Z badań i obliczeń wynika, że pod obciążeniem F = 25 kN w przekroju oddalonym 3,09 m od wierzchołka możliwe jest pojawienie się rys od momentu zginającego.

 $M_{3.09} = 25 (3,09 - 0,2) = 72,25 \text{ kNm}$

 $M_{cr}^{5,00}$ = 2,92245 (12,12 + 2 · 3,5) = 55,877 kN < M_{3.09}

Badanie nr 2, żerdź nr 1 i badanie nr 3, żerdź nr 2

Obie żerdzie uległy zniszczeniu na skręcanie w przekroju ukośnym w strefie oddalonej 0,4 m ÷ 1 m od wierzchołka, tj. w przekrojach, gdzie moment zginający w stosunku do momentu skręcającego jest mały.

$$\frac{\mathrm{doś}\,M}{\mathrm{doś}\,T_n} = \frac{3,61}{25,725} = 0,14$$

W sytuacji, kiedy żerdź nie ma zbrojenia na skręcanie, zniszczenie następuje z chwilą pojawienia się rysy ukośnej wywołanej jednoczesnym skręcaniem i zginaniem bądź skręcaniem i ścinaniem. Obciążenie niszczące, zgodnie z hipotezą największych naprężeń normalnych, można wyznaczyć z warunku, że w skrajnym włóknie przekroju główne naprężenie rozciągające w betonie osiąga wytrzymałość na rozciąganie f_{ctm}.

Na odcinku żerdzi bez rys od zginania, tj. w strefie szczytowej, moment skręcający T_s , moment zginający M_s i siła poprzeczna V_s powinny spełniać dwa warunki:

skręcanie połączone ze zginaniem

$$T_{S} \leq W_{cl} f_{ctm} \left(1 + \frac{\sigma_{cp}}{f_{ctm}} - \frac{M_{S}}{W_{c} f_{ctm}} \right)^{0,5}$$
(4)

skręcanie połączone ze ścinaniem

$$T_{S} \leq W_{ct} f_{ctm} \left[1 + \frac{\sigma_{cp}}{f_{ctm}} - \left(\frac{V_{S} S}{I b_{w} f_{ctm}} \right)^{2} \right]^{0,5}$$
(5)

Warunek (4) i (5) można przedstawić w postaci (4') i (5')

$$\left(\frac{T_S}{T_{Rm}}\right)^2 + \frac{M_S}{M_{cr}} \le 1$$

$$\left(\frac{T_S}{T_R}\right)^2 + \left(\frac{V_S}{V_R}\right)^2 \le 1$$
(4')
(5')

gdzie:

$$T_{Rm} = W_{ct} f_{ctm} \left(1 + \frac{\sigma_{cp}}{f_{ctm}} \right)^{0.5}$$
(6)

$$V_{Rm} = \frac{I b_w}{S} f_{ctm} \left(1 + \frac{\sigma_{cp}}{f_{ctm}} \right)^{0.5}$$
(7)

$$W_{ct} = \frac{\pi D}{16}^3 \left[1 - \left(\frac{d_w}{D}\right)^4 \right]$$
(8)

$$\frac{l b_w}{S} = 0.5 \ \pi d_0 \ t \ \frac{1 + \left(\frac{t}{d_0}\right)^2}{1 + \frac{1}{3} \left(\frac{t}{d_0}\right)^2} \tag{9}$$

 $t = (D - d_w) 0,5$ $d_0 = d_w + t$

Żerdź nr 1 i nr 2 (przekrój 0,4 m)

Przy znanym sposobie obciążenia żerdzi i znanym wysięgu poprzecznika "w" obciążenie niszczące T_{Sm} oraz M_{Sm} można obliczyć ze wzoru

$$\left(\frac{F_m \, 1,5}{28,5}\right)^2 + \frac{F_m \, (0,40-0,21) + 1 \, (0,4-0,05)}{41,772} = 1 \tag{10}$$

$$\begin{split} M_{cr} &= 1,96574 \ (2 \cdot 3,5 + 14,25) = 41,772 \ \text{kNm} \\ T_{Rm} &= 3,61564 \cdot 3,5 \ (1 + 14,25/3,5)^{0,5} = 28,5 \ \text{kNm} \\ V_{Rm} &= 0,02679 \cdot 3500 \ (1 + 14,25/3,5)^{0,5} = 211,16 \ \text{kN} \\ \text{Z równania} \ (10) \ \text{wyznaczono:} \\ F_m &= 18,12 \ \text{kN} \\ T_{Sm} &= 1,5 \cdot 18,12 = 27,18 \ \text{kNm} \\ M_{Sm} &= 18,12 \cdot 0,19 + 0,35 = 3,793 \ \text{kNm} \\ V_{Sm} &= 18,12 + 1 = 19,12 \ \text{kNm} \\ \end{split}$$

Jednocześnie w chwili zniszczenia spełniony jest drugi warunek nośności:

$$\left(\frac{27,18}{28,5}\right)^2 + \left(\frac{19,12}{211,16}\right)^2 = 0,9095 + 0,0082 = 0,918 < 1$$

Z badań uzyskano:

żerdź nr 1

doś $F_m = 17,15$ kNm doś $T_{Sm} = 17,15 \cdot 1,5 = 25,725$ kNm doś $M_{Sm} = 1(0,4 - 0,05) + 17,15 (0,4 - 0,21) = 3,61$ kNm doś $V_{Sm} = 1 + 17,15 = 18,15$ kN

żerdź nr 2

 $\begin{array}{ll} {\rm doś}\; F_m = 18,54\;{\rm kNm} \\ {\rm doś}\; T_{Sm} = 18,54 \cdot 1,5 = 27,81\;{\rm kNm} \\ {\rm doś}\; M_{Sm} = 1\;(0,4-0,05) + 18,54\;(0,4-0,21) = 3,87\;{\rm kNm} \\ {\rm doś}\; M_{Sm} = 1\;+\;18,54 = 19,54\;{\rm kN} \\ {\rm \acute{S}rednie}\; {\rm wartości}\; {\rm obciążeń}\; {\rm niszczących}\; {\rm uzyskane}\; z\; {\rm dwóch}\; {\rm badań}; \\ {\rm według}\; {\rm badań}\; & {\rm według}\; {\rm obliczeń} \\ {\rm doś}\; F_m = (17,15+18,54)\;0,5 = 17,845\;{\rm kN}\; - 18,15\;{\rm kN} \\ {\rm doś}\; T_{Sm} = (25,725+27,81)\;0,5 = 26,77\;{\rm kNm}\; - 27,18\;{\rm kNm} \\ {\rm doś}\; M_{Sm} = (3,61+3,87)\;0,5 = 3,74\;{\rm kNm}\; - 3,793\;{\rm kNm} \\ {\rm doś}\; V_{sm} = (18,15+19,54)\;0,5 = 18,845\;{\rm kN}\; - 19,12\;{\rm kN} \end{array}$

Wyniki badań i obliczeń nośności żerdzi na odcinku niezarysowanym (strefa od 0,4 m do 1,0 m) przedstawiono w tablicach nr 2 i nr 3 oraz na rysunku 13.

Nr ba- dania	Odległość <i>I_x</i> , m	M _{cr} * wg (3) M _{Rm} = = 1,54 M _{Rd} kNm	doś. <i>M_S</i> kNm	T _{Rm} wg (6) kNm	doś <i>T_{sm}</i> (z badań) kNm	$\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}}$			
Ir 2	0,4	41,772*	3,61	28,50		0,815 + 0,086 = 0,901**			
rdź r	3,09	147,84	52,43	40,33		0,407 + 0, 355 = 0,762			
2, że kN	4,39	207,90	76,03	46,22	25,725	0,310 + 0,366 = 0,676			
ie nr 7,15	5,69	274,18	99,62	52,60		0,239 + 0,363 = 0,602			
adani " = 1	6,99	351,12	123,22	58,59		0193 + 0,351 = 0,544			
щщ	10,0	429,04	177,85	78,61		0,107 + 0,415 = 0,522			
Jr 2	0,4	41,772*	3,87	28,50		0,952 + 0,093 = 1,045**			
ırdź r	3,09	147,84	56,44	40,33		0,475 + 0,374 = 0,849			
3, że kN	4,39	207,90	81,84	46,22	27,81	0,362 + 0,394 = 0,756			
ie nr 8,54	5,69	274,18	107,24	52,60		0,280 + 0,391 = 0,671			
adani $n = 1$	6,99	351,12	132,64	58,59		0,225 + 0,378 =0,603			
Щ. Ш.	10,0	429,04	191,46	78,61		0,125 + 0,446 = 0,571			
$^{**} \left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{M_{Sm}}{M_{cr}}$									

Tablica 2. Nośność żerdzi na skręcanie połączone ze zginaniem według badań – badania nr 2 i nr 3 Table 2. Resistance of pole subjected to torsion and bending - results of tests 2 and 3 $dos M_s = (l_x - 0.05) 1 + (l_x - 0.21) F_s$

Dane uzyskane z obliczeń mieszczą się w przedziale wyników uzyskanych z badań. Dobra zgodność uzyskanych wyników potwierdza poprawność zarówno metody obliczeń, jak i metodyki badań.

Sprawdzenie nośności w pozostałych przekrojach zarysowanych

Obciążenie niszczące w przekroju 3,09 m od wierzchołka wyznaczono z równania

$$\frac{F_{1,5}}{40,33}\Big|^2 + \frac{F_{1,5}}{55,877} + \frac{F_{1,5}}{55,877} - 1 = 0$$

 F_S = 13,474 kN T_S = 13,474 · 1,5 = 20,21 kNm < doś T_{Sm} = 26,77 kNmW chwili pojawienia się rysy ukośnej stosunek momentu zginającego do momentu skręcającego wynosił . .

$$\frac{M_S}{T_S} = \frac{41,845}{20,21} = 2,1$$

Tablica 3. Nośność żerdzi na skręcanie połączone ze zginaniem i ścinaniem według obliczeń – badania nr 2 i nr 3

Table 3. Resistance of pole subjected to torsion, bending and shear – results of calculation – tests 2 and 3

Nr badania	Odległość <i>I_x</i> , m	M_{cr}^{*} wg (3) $M_{Rm} =$ = 1,54 M_{Rd} kNm	doś <i>M_S</i> kNm	T _{Rm} wg (6) kNm	<i>T_{Sm}</i> wg (10) kNm	$\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}} \le 1$
	0,4	41,772*	3,793	28,50		0,9095 + 0,0905 = 1**
8adanie nr 2 i nr 3 <i>F_{Sm}</i> = 18,12 kN 66'9 66'9 66'9	3,09	147,84	55,23	40,33		0,454 + 0,374 = 0,828
	4,39	207,90	79,54	46,22	27.18	0,346 + 0,383 = 0,729
	5,69	274,18	104,94	52,60		0,267 + 0,383 = 0,650
	6,99	351,12	129,78	58,59		0,224 + 0,359 = 0,583
	10,0	429,04	187,34	78,61		0,120 + 0,437 = 0,557

$$M_S = (I_x - 0.05) 1 + (I_x - 0.21) F_S$$

Nr badania	Odległość <i>I_x</i> , m	<i>V_R*</i> wg (7) <i>V_{R1}</i> wg (12)	T _{Rm} wg (6)	<i>V_S</i> wg (10) kN	<i>T_{Sm}</i> wg (10) kNm	$\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \left(\frac{V_S}{V_{Rm}}\right)^2 \le 1$			
	0,4	211,16*	28,5			0,9095 + 0,0082 = 0,918**			
5.3	3,09	118,14	40,33	19.12	27,18	0,454 + 0,026 = 0,480			
2 kN	4,39	127,56	46,22			0,346 + 0,022 = 0,368			
ie nr 18,1	u e U 9,69	132,804	52,60			0,267 + 0,021 = 0,288			
adan ^{Sm =}	6,99	138,876	58,59			0,224 + 0,019 = 0,243			
щщ	10,0	160,152	78,61			0,120 + 0,014 = 0,134			
$**\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{M_{Sm}}{M_{cr}} \le 1$									

Przy tym stosunku M_S/T_S zarysowanie ukośne nie było równoznaczne ze zniszczeniem przekroju mimo braku zbrojenia poprzecznego na skręcanie. Wychodząc z tego ustalenia, współdziałanie momentu skręcającego, momentu zginającego i siły poprzecznej na odcinku zarysowanym można przedstawić za pomocą krzywych interakcji, jak na odcinku nie zarysowanym:

$$\left(\frac{T_{Sd}}{T_{Rm}}\right)^2 + \frac{M_{Sd}}{M_{Rm}} = 1$$
(11)

przyjmując $M_{\rm Rm}$ zamiast $M_{\rm cr}$ oraz nośność na ścinanie $V_{\rm Rm1}$ zamiast $V_{\rm Rm}$ obliczoną ze wzoru

$$V_{Rm1} = [0,35 \ k \ f_{ctm} \ (1,2 + 40 \ \rho_L) + 0,15 \ \sigma_{cp}] \ 2t \cdot 0,6d \tag{12}$$

gdzie 0,6d - użyteczna wysokość zastępczego przekroju skrzynkowego.

Zgodnie z normą [2] V_{R1} oznacza nośność na ścinanie ze względu na rozciąganie betonu powstające przy ścinaniu w elemencie nie mającym poprzecznego zbrojenia na ścinanie.

Nośność na zginanie obliczoną dla średniej wytrzymałości materiałów wyznaczono według wzoru

$$M_{Rm} = \frac{\gamma_{\text{glob}}}{\gamma_f} M_{Rd} \tag{13}$$

Na podstawie dotychczasowych badań żerdzi można przyjąć dla żerdzi dozbrojonych stalą pasywną A-III N doświadczalny współczynnik bezpieczeństwa na zniszczenie przy zginaniu γ_{dlob} = 2 oraz odpowiednio

$$M_{Rm} = \frac{2.0}{1.3} M_{Rd} = 1.54 M_{Rd}$$
(13)

Nośność na czyste skręcanie T_{Bm} przyjęto według wzoru (6).

Rys. 13. Wyniki badań żerdzi na jednoczesne zginanie i skręcanie Fig. 13. Results of experimenttal testing and calculation of partially prestressed concrete poles subjected to combined torsion and bending

Teoretyczne obciążenie niszczące w postaci momentu skręcającego T_{Sm} i momentu zginającego M_{Sm} oraz momentu T_{Sm} i siły poprzecznej V_{Sm} wyznaczono dla trzech różnych schematów obciążenia żerdzi. W każdym schemacie obciążenia sprawdzono także warunki nośności w sześciu kolejnych przekrojach żerdzi.

Badanie nr 4 i badanie nr 5

Wyniki badań i obliczeń przedstawiono w tablicy 4 i 5 oraz na rysunku 13.

Obciążenie obu żerdzi nie zostało doprowadzone do zniszczenia ze względu na znaczne rozwarcie rys normalnych i ukośnych rozmieszczonych na całej długości żerdzi. Obliczenia wykazały, że w ostatniej fazie obciążenia poziom wytężenia w poszczególnych przekrojach był wysoki i dość wyrównany. Według obliczeń maksymalne wytężenie miało miejsce w przekroju I_x = 3,09 m. Teoretyczne obciążenie niszczące w przekroju 3,09 m:

 $F_{Sm} = 20,57 \text{ kN}$ $T_{Sm} = 20,57 \cdot 1,5 = 30,855 \text{ kNm}$ $M_{Sm} = 61,23 \text{ kNm}$ $V_S = 2 \cdot 20,57 = 41,14 \text{ kN}$ Obciążenie w chwili przerwania badań wynosiło:

badanie nr 4

F _S = 19 kN	< F _{.Sm} = 20,57 kN
$T_{S} = 19 \cdot 1,5 = 28,5 \text{ kNm}$	< T _{Sm} = 30,855 kNm
$M_{s} = 56,62 \text{ kNm}$	< M _{Sm} = 61,23 kNm
$V_{\rm S} = 2 \cdot 19 = 38 \rm kN$	$< V_{\rm S} = 41,14$ kN
badanie nr 5	0
$F_s = 20 \text{ kN}$	< F _{sm} = 20,57 kN
$T_{S} = 20 \cdot 1,5 = 30 \text{ kNm}$	< <i>T_{sm}</i> = 30,855 kNm
$M_{S} = 59,6 \text{ kNm}$	$< M_{Sm} = 61,23 \text{ kNm}$
$V_{S} = 2 \cdot 20 = 40 \text{ kN}$	$< V_{\rm s} = 41,14$ kN
5	0

Porównanie nośności teoretycznej z wynikami badań wskazuje na dobrą zbieżność wyników badań i obliczeń.

Według badań i obliczeń o nośności żerdzi na skręcanie decydowało skręcanie połączone ze zginaniem. We wszystkich przekrojach moment skręcający T_s i siła poprzeczna spełniały warunek nośności (5').

Badanie nr 6, żerdź nr 1

Zniszczenie nastąpiło w przekroju ukośnym 3,66 m od wierzchołka. Wyniki badań i obliczeń przedstawiono w tablicy nr 6 i 7 oraz na rysunku 13. Teoretyczne obciążenie niszczące powinno nastąpić pod obciążeniem w przekroju 3,09 m:

 $\begin{array}{ll} F_{Sm} = 23,702 \ {\rm kN} \\ T_{Sm} = 23,702 \cdot 1,5 = 35,553 \ {\rm kNm} \\ M_{Sm} = 32,946 \ {\rm kNm} \\ V_S = 23,702 \ {\rm kN} \\ {\rm Wed} {\rm ug} \ {\rm badan}' \ {\rm obciażenie} \ {\rm w} \ {\rm przekroju} \ 3,09 \ {\rm m} \ {\rm wynosiło}; \\ F_S = 22 \ {\rm kN} \\ T_S = 22 \cdot 1,5 = 33 \ {\rm kNm} \\ M_S = 30,58 \ {\rm kNm} \\ V_S = 22 \ {\rm kN} \\ \end{array} \qquad \qquad \begin{array}{ll} < F_{Sm} = 23,702 \ {\rm kN} \\ < T_{Sm} = 35,553 \ {\rm kNm} \\ < M_{Sm} = 32,946 \ {\rm kNm} \\ V_S = 22 \ {\rm kN} \\ \end{array}$

Przyczyną nieznacznej rozbieżności wyników w tym przekroju jest to, że żerdź nr 1 była wcześniej obciążana w badaniu nr 5 do poziomu wytężenia wyższego niż w badaniu nr 6. W tej sytuacji można przyjąć, że w przekroju 3,66 m od wierzchołka, a także w sąsiednich przekrojach nastąpiła częściowa destrukcja betonu i w konsekwencji obniżenie nośności.

Tablica 4. Nośność żerdzi na skręcanie połączone ze zginaniem według badań – badanie nr 4 i nr 5 Table 4. Resistance of pole subjected to torsion and bending – results of testing – tests 4 and 5 doś M_S = (l_x + 1,5) F_S + (l_x - 1,7) F_S = (2 l_x - 3,2) F_S

Nr badania	Odległość <i>I_x</i> , m	$M_{Rm} = 1,54 M_{rd}$ kNm	doś <i>M_S</i> kNm	<i>T_{Rm}</i> wg (6) kNm	doś <i>T_S</i> (z badań) kNm	$\left(\frac{T_S}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}}$
Badanie	3,09	147,84	56,62	40,33		0,499 + 0,383 = 0,882
nr 4, żerdź nr 2	4,39	207,90	106,02	46,22		0,380 + 0,510 = 0,890
E	5,69	274,12	155,92	52,60	28,5	0,294 + 0,569 = 0,863
<i>⊢_S =</i> = 19,0 kN	6,99	351,12	204,82	58,59		0,237 + 0,583 = 0,820
	10,0	429,04	319,20	78,61		0,131 + 0,744 = 0,875
	3,09	147,84	59,60	40,33		0,553 + 0,403 = 0,956
Badanie nr 5,	4,39	207,90	111,60	46,22		0,421 + 0,537 = 0,958
żerdź nr 1 <i>F_S</i> = 20 kN	5,69	274,12	163,60	52,60	30,0	0,325 + 0,597 = 0,922
	6,99	351,12	215,60	58,59		0,262 + 0,614 = 0,876
	10,0	429,04	336,00	78,61		0,146 + 0,783 = 0,929

Tablica 5. Nośność żerdzi na skręcanie połączone ze zginaniem i ścinaniem według obliczeń – badania nr 4 i nr 5

Table 5. Resistance of pole subjected to torsion, bending and shear – results of calculation – tests 4 and 5

Nr badaniaOdległość
$$I_x$$
, m $M_{Bm} =$
= 1,54 M_{Rd}
kNm M_S
kNm T_{Rm}
wg (6)
kNm T_{Sm}
(wg 10)
kNm $\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}} \le 1$ Badanie
nr 4 i nr 53,09147,8461,2340,33 $0,585 + 0,415 = 1$ $F_{Sm} =$
= 20,57 kN5,69274,18168,2652,60 $0,344 + 0,614 = 0,958$ $F_{Sm} =$
= 10,010,0429,04345,52678,60 $0,154 + 0,805 = 0,959$

$$M_S = (l_x - 1,5) F + (l_x - 1,7) F_S$$

c.d. tablicy 5

Nr badania	Odległość <i>I_x</i> , m	V _{R1} wg (12)	T _{Rm} wg (6) kNm	V _S wg (10) kN	<i>T_{≲m}</i> wg (10) kNm	$\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{V_S}{V_{Rm}} \le 1$
	3,09	118,14	40,33			0,585 + 0,121 = 0,680
Badanie nr 4 i nr 5	4,39	127,56	46,22	h shekirin a sa Marina		0,446 + 0,104 = 0,550
F _{sm} = = 20,57 kN	5,69	132,804	52,60	41,14	30,855	0,344 + 0,096 = 0,440
	6,99	138,876	58,59			0,277 + 0,088 = 0,365
	10,0	160,152	78,61			0,154 + 0,066 = 0,220

Tablica 6. Nośność żerdzi na skręcanie połączone ze zginaniem według badań – badanie nr 6 Table 6. Resistance of pole subjected to torsion and bending – results of testing – test 6

Nr badania	Odległość <i>I_x</i> , m	<i>M_{Rm}</i> = = 1,54 <i>M_{Rd}</i> kNm	doś <i>M_S</i> kNm	<i>T_{Rm}</i> wg (6) kNm	doś T _{Sm} (z badań) kNm	$\left(\frac{T_S}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}}$			
	3,09	147,84	30,58	40,33		0,669 + 0,207 = 0,876			
Badanie	3,66*	174,17	43,12	42,91	33,0	0,591 + 0,248 = 0,839			
nr 6, żerdź nr 1	4,39	207,90	59,18	46,22		0,510 + 0,285 = 0,795			
$F_{Sm} = 22 \text{ kN}$	5,69	274,12	87,78	52,60		0,394 + 0,320 = 0,714			
om	6,99	351,12	116,38	58,59		0,317 + 0,331 = 0,648			
	10,0	429,04	182,6	78,61		0,176 + 0,426 = 0,602			
* Przekrój zn	* Przekrój zniszczenia żerdzi na skręcanie ze zginaniem								

doś
$$M_{s} = (I_{x} - 1,7) F_{sm}$$

Tablica 7. Nośność żerdzi na skręcanie połączone ze zginaniem i ścinaniem według obliczeń – badanie nr 6

Table 7. Resistance of pole subjected to torsion, bending and shear - results of calculation - test 6

 $M_{S} = (I_{x} - 1,7) F$

Nr badania	Odległość <i>I_x</i> , m	<i>M_{Rm}</i> = = 1,54 <i>M_{Rd}</i> kNm	<i>M_S</i> kNm	T _{Rm} wg (6) kNm	T _{Sm} wg (10) kNm	$\left(\frac{T_S}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}} \le 1$
Badanie nr 6, żerdź nr 1 $F_{Sm} =$ = 23,702 kN	3,09	147,84	32,946	40,33		0,777 + 0,223 = 1
	3,66*	174,17	43,12	42,91	35,553	0,686 + 0,248 = 0,934
	4,39	207,90	63,758	46,22		0,592 + 0,307 = 0,899

Nr badania	Odległość <i>I_x</i> , m	M _{Bm} = = 1,54 M _{Rd} kNm	<i>M_S</i> kNm	<i>T_{Rm}</i> wg (6) kNm	T _{Sm} wg (10) kNm	$\left(\frac{T_S}{T_{Rm}}\right)^2 + \frac{M_S}{M_{Rm}} \le 1$		
Badanie nr 6, żerdź nr 1 F _{Sm} = = 23,702 kN	5,69	274,18	94,57	52,60		0,457 + 0,345 = 0,802		
	6,99	351,12	125,384	58,59	35,553	0,368 + 0,357 = 0,725		
	10,0	429,04	196,727	78,,61		0,202 + 0,459 = 0,664		
* Przekrój zniszczenia żerdzi na skręcanie ze zginaniem.								

Nrbadania	Odległość <i>I_x</i> , m	VR1 wg (12) kN	T _{Rm} wg (6) kNm	V _S kN	<i>T_{Sm}</i> wg (10) kNm	$\left(\frac{T_{Sm}}{T_{Rm}}\right)^2 + \frac{V_S}{V_{Rm}} \le 1$
Badanie nr 6, żerdź nr 1 <i>F_{Sm}=</i> = 23,702 kN	3,09	118,14	40,33			0,777 + 0,040 = 0,817
	4,39	127,56	46,22	23,702		0,686 + 0,035 = 0,627
	5,69	132,804	52,60		35,553	0,592 + 0,032 = 0,489
	6,99	138,876	58,59			0,457 + 0,029 = 0,397
	10,0	160,152	78,61			0,368 + 0,022 = 0,226

Zasady obliczania nośności częściowo sprężonych żerdzi wirowanych na skręcanie połączone ze zginaniem i ścinaniem

Obliczeniowe momenty T_{sd} i M_{sd} oraz siła poprzeczna V_{Sd} powinny spełniać warunki:

$$\left(\frac{T_{sd}}{T_{Rd}}\right)^2 + \frac{M_{sd}}{M_{Rd}} \le 1$$
(14)

$$\left(\frac{T_{sd}}{T_{Rd}}\right)^2 + \left(\frac{V_{sd}}{V_{Rd}}\right)^2 \le 1$$
(15)

gdzie:

$$T_{Rd} = W_t f_{ctd} \sqrt{1 + \frac{\sigma_{cp}}{f_{ctd}}}$$
(16)

 V_{sd} – według wzoru (7) w przekroju niezarysowanym, V_{Rd} – według wzoru (12) w przekroju zarysowanym; w przypadku warunków wyjątkowych należy przyjmować γ_f = 1. Obliczeniowe momenty T_{Sd} , M_{Sd} i siłę poprzeczną V_{Sd} określa się według schematu statycznego, jak na rysunku 14.

Przy znanym obciążeniu F_{sd} i wysięgu poprzecznika w zadanie sprowadza się do sprawdzenia nierówności (14) i (15). Dla założonej długości poprzecznika w można określić obciążenie graniczne T_{sd} , przyjmując we wzorze (15) znak równości.

Po podstawieniu do równania (15)

$$T_{sd} = F_{sd} \quad w,$$

$$M_{sd} = 2F_{sd} (I_x - 0,2)$$

otrzymuje się równanie kwadratowe z niewiadomym obciążeniem F

$$\left(\frac{F_{Sd} w}{T_{Rd}}\right)^2 + \frac{2F_{Sd} (I_x - 0, 2)}{M_{Rd}} - 1 = 0$$
(17)

Przyjmując, tak jak w badanych żerdziach, w = 1,5 m, możemy wyznaczyć F_{sd} w każdym kolejnym przekroju.

Obliczenia rozpoczęto od przekroju $I_x = 0.4$ m. Po podstawieniach uzyskano równanie:

$$\left(\frac{F_{Sd} \cdot 1,15}{15,18}\right) + \frac{2F_{Sd} (3,09 - 0,2)}{34,58} - 1 = 0$$

gdzie: $T_{Rd} = 3,61564 \cdot 1,67 \cdot 1 + \left(\frac{14,25}{1,67}\right)^{0,5} = 15,18 \text{ kNm}$
 $M_{Rd} = 1,96574 (2 \cdot 1,67 + 14,25) = 34,58 \text{ kNm}$
z którego wyznaczono
 $F_{Sd} = 9,545 \text{ kN}$

$$\begin{split} T_{Sd} &= 9,545 \cdot 1,5 = 14,3175 \text{ kNm} \\ M_{Sd} &= 9,545 \cdot 0,4 = 3,818 \text{ kNm} \\ V_{Sd} &= 2 \cdot 9,545 = 19,09 \text{ kN} \\ \text{Sprawdzenie warunku (15):} \end{split}$$

$$\left(\frac{14,3175}{15,18}\right)^2 + \left(\frac{19,09}{138,135}\right) = 0,8896 + 0,0191 = 0,909 < 1,0$$

Sprawdzenie stanu granicznego nośności w kilku przekrojach przedstawiono w tablicy 8.

Tablica 8. Sprawdzenie stanu granicznego nośności na skręcanie połączone ze zginanier	n
Table 8. Results of calculation of ultimate strength under combined torsion and bending	
$M_{Sd} = 2F_{Sd} (I_x - 0,2)$	

Przekrój nr	<i>M_{Rd}</i> kNm	<i>M_{sd}</i> kNm	<i>T_{Rd}</i> wg (16) kNm	<i>T_{sd}</i> kNm	$\left(\frac{T_{sd}}{T_{Rd}}\right)^2 + \frac{M_{Sd}}{M_{Rd}} \le 1$
0,4	34,58*	3,818	15,18	14,318	0,8896 + 0,1104 = 1,0
1,0	38,44*	15,272	20,57		0,4845 + 0,3973 = 0,882
2,6	70,36	45,816	24,655		0,337 + 0,651 = 0,988
3,09	96	55,816	26,18		0,299 + 0,581 + 0,880
4,39	135	79,987	29,81		0,2307 + 0,5925 = 0,823
5,69	178,04	104,804	33,72		0,1803 + 0,5887 = 0,769
6,99	228	129,621	37,44		0,1462 + 0,5685 = 0,715
10,0	278,6	187,082	49,43		0,084 + 0,6715 = 0,756
(P ()		*	$M_{Rd} = W_{cs} (f_{ctd})$	+ σ _{cp})	1

Moment skręcający niszczący T_{Sm} obliczony dla średniej wytrzymałości betonu na rozciąganie f_{ctm} = 3,5 MPa w przekroju 0,4 m od wierzchołka żerdzi wynosi

$$\left(\frac{1.5 F_m}{28,50}\right)^2 + \frac{2F_m(0.4 - 0.2)}{41,772} - 1 = 0$$

$$F_m = 17,35 \text{ kN}$$

$$T_{Sm} = 1,5 \cdot 17,35 = 26,025 \text{ kNm}$$

$$V_S = 2 \cdot 17,35 = 34,7 \text{ kNm}$$

Współczynnik bezpieczeństwa na zniszczenie momentem skręcającym w tym przekroju wynosi

$$s = \frac{T_{sm}}{T_{sd}} = \frac{26,025}{14,318} = 1,82$$

10. Podsumowanie i wnioski

W artykule przedstawiono:

 opis stanowiska i przebieg badania nośności na skręcanie połączone ze zginaniem i ścinaniem częściowo sprężonych żerdzi wirowanych,

• wyniki badania nośności żerdzi częściowo sprężonych na skręcanie połączone ze zginaniem przeprowadzone przy trzech schematach obciążenia różniących się stosunkiem M/T,

 propozycje krzywej interakcji określającej warunek nośności na skręcanie połączone ze zginaniem oraz skręcanie połączone ze ścinaniem częściowo sprężonych żerdzi wirowanych.

W wyniku przeprowadzonych badań doświadczalnych częściowo sprężonych żerdzi wirowanych stwierdzono, że:

 wstępne zarysowanie w próbie zginania w normalnych warunkach pracy żerdzi nie miało istotnego wpływu na nośność żerdzi w próbie skręcania połączonego ze zginaniem;

 w przypadku stosunku M/T ≈ 0,14 zniszczenie obu żerdzi nastąpiło w przekroju 0,4 m od wierzchołka w chwili pojawienia się rysy ukośnej;

 w pozostałych przekrojach przy większym udziale zginania (M/T≥2) pojawienie się rys ukośnych nie było równoznaczne ze zniszczeniem;

 wyniki badań (przedstawione na rysunku 13) potwierdziły przydatność proponowanych krzywych interakcji do oceny stanu granicznego nośności na skręcanie połączone ze zginaniem i ścinaniem żerdzi wirowanych, sprężonych osiowo i dozbrojonych prętami pasywnymi;

o nośności na skręcanie decydował moment skręcający i moment zginający;

• obliczeniowy moment skręcający T_{Sd} , moment zginający M_{Sd} i obliczeniowa siła poprzeczna V_{Sd} powinny spełniać warunki:

$$\left(\frac{T_{sd}}{T_{Rd}}\right)^2 + \frac{M_{sd}}{M_{Rd}} \le 1.0$$
(14)

$$\left(\frac{T_{sd}}{T_{Rd}}\right)^2 + \left(\frac{V_{sd}}{V_{Rd}}\right)^2 \le 1,0$$
(15)

gdzie:

$$T_{Rd} = W_t F_{ctd} \sqrt{1 + \frac{\sigma_{cp}}{f_{ctd}}}$$
(16)

Na odcinku niezarysowanym należy przyjąć:

$$M_{Rd} = W_{cs} \left(\sigma_{cp} + 2f_{ctd}\right) \tag{17}$$

$$V_{Rd} = \frac{I b_w}{S} f_{ctd} \left(1 + \frac{\sigma_{cp}}{f_{ctd}} \right)^{0,5}$$
(18)

Na odcinku zarysowanym przyjmuje się:

 M_{Rd} według normy [2] $V_{Rd} = [0.35 \ k \ f_{ctd} \ (1.2 + 40 \ \rho_L) + 0.15 \ \sigma_{cn}] \ 1.2 \cdot t_d$

Bibliografia

- [1] PN EN 12843 : 2005[U] Prefabrykaty betonowe maszty i słupy
- [2] PN-B-03264:2002 Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie
- [3] PN-EN 1992-1-1 Eurokod 2. Projektowanie konstrukcji z betonu. Część 1: Reguły ogólne i reguły dla budynków
- [4] Szczygielski A.: Wytrzymałość na skręcanie dwugałęziowych słupów sprężonych. ITB, Warszawa 1977
- [5] Łodo A.: Momenty skręcające w żerdziach wirowanych typu E i EM; praca badawcza Instytutu Budownictwa Politechniki Wrocławskiej; Wrocław, maj 2003 (maszynopis)
- [6] Projekt techniczny elektroenergetycznych żerdzi wirowanych typu EM 12/15; EM 12/20 i EM 12/25. Raport serii U nr 10/2000. Instytut Budownictwa Politechniki Wrocławskiej
- [7] PN-87/B-03265 Elektroenergetyczne linie napowietrzne. Żelbetowe i sprężone konstrukcje wsporcze. Obliczenia statyczne i projektowanie
- [8] Jasman S., Łodo A.: Stany graniczne użytkowalności częściowo sprężonych żerdzi wirowanych typu E i EM XLVI. Konferencja Naukowa KTL i WPAN, Krynica 2000. KN PZITB, t. 2, s. 79–86

EXPERIMENTAL AND ANALYTICAL VERIFICATION OF PARTIALLY PRESTRESSED SPUN CONCRETE POLES SUBJECTED TO COMBINED TORSION BENDING AND SHEAR

Summary

The paper presents the results of experimental testing and calculation of partially prestresed spun concrete poles of 12,0 m length and permissible horizontal point load P_k = 20,0 kN, subjected to the combined torsion, bending and shear.

Praca wpłynęła do Redakcji 6 X 2006

(19)