PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling of size effects in concrete using elasto-plasticity with non-local softening

Identyfikatory
Warianty tytułu
PL
Modelowanie efektów skali w betonie przy zastosowaniu sprężysto-plastyczności z nielokalnym osłabieniem
Języki publikacji
EN
Abstrakty
EN
The paper presents numerical FE-simulations of size effects in quasi-brittle materials like concrete performed under plane strain conditions. The material was modeled within elasto-plasticity with isotropic hardening and softening. A linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a linear Rankine criterion with an associated flow rule was adopted in the tensile regime. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by non-local terms to include a characteristic length of micro-structure. FE-analyses of 3 different boundary value problems with respect to a size effect was performed for uniaxial tension, uniaxial compression and three-point bending using various ratios between the characteristic length of microstructure and a concrete specimen size. The numerical results for uniaxial tension and bending were compared with the size effect law by Bazant. In addition, the size effect was numerically investigated in a reinforced concrete beam without stirrups subject to bending, where a perfect bond between concrete and reinforcement was assumed.
PL
Artykuł przedstawia numeryczne symulacje MES efektów skali w materiałach kruchych takich jak beton wykonane w warunkach płaskiego stanu odkształceń. Materiał był modelowany w ramach sprężysto-plastyczności z izotropowym wzmocnieniem i osłabieniem. W obszarze ściskania przyjęto liniowe kryterium Druckera-Pragera z niestowarzyszonym prawem płynięcia, a w obszarze rozciągania liniowe kryterium Rankina ze stowarzyszonym prawem płynięcia. W celu zapewnienia niezależności wyników od siatki i możliwości opisu efektów skali, oba kryteria zostały rozszerzone w obszarze osłabienia o czynniki nielokalne w celu uwzględniania długości charakterystycznej mikrostruktury. Wykonano analizy 3 różnych problemów brzegowych ze względu na efekt skali: jednoosiowego ściskania, jednoosiowego rozciągania i 3-punktowego zginania dla różnych proporcji między długością charakterystyczną mikrostruktury a wielkością elementu. Wyniki numeryczne dla rozciągania i zginania zostały porównane z prawem efektu i skali według Bazanta. Dodatkowo wykonano obliczenia dla żelbetowych belek bez strzemion poddanych zginaniu, gdzie przyjęto pełny kontakt (bez możliwości poślizgu) między zbrojeniem a betonem.
Twórcy
autor
autor
Bibliografia
  • 1. Abaqus, Theory Manual, Yersion 5.8, Hibbit, Karlsson & Sorensen Inc., 1998.
  • 2. J. AKKERMANN, Rotalionsverhalten von Stahlbeton-Rahmenecken, Dissertation, Universitat Fridericiana zu Karlsruhe, Karlsruhe 2000.
  • 3. H. ASKES, L. J. SLUYS, A classification of higher-order strain gradient models in damage mechanics, Arch. Appl. Mech., 53 (5-6), 448^65, 2003.
  • 4. Z. P. BAŻANT, Size effect in blunt fracture: concrete, rock, metal., J. Engng. Mech. ASCE, 100, 518-535, 1984.
  • 5. Z. P. BAŻANT, F. LIN, Non-local yield limit degradation, Int. J. Num. Meth. Engng., 35, 1805-1823, 1988.
  • 6. Z. P. BAŻANT, J. PLANAS, Fracture and size effect in concrete and other ąuasi-brittle materials CRC Press, Boca Raton 1998.
  • 7. Z. BAŻANT, M. JIRASEK, Nonlocal integral formulations of plasticity and damage: survey of progress, J. Engng. Mech., 128, 11, 1119-1149, 2002.
  • 8. Z. P. BAŻANT, Scaling of Structural Strength, Hermes-Penton, London 2003.
  • 9. Z. P. BAŻANT, A. YAYARI, Is the cause of size effect on Structural strength fractal or energetic-statistical?, Engineering Fracture Mechanics, 72, 1-31, 2005.
  • 10. C. LE BELLEGO, J. F. DUBE, G. PIJAUDIER-CABOT, B. GERARD, Calibration of nonlocal damage model from size effect tests, E. J. Mechanics A/Solids, 22, 33-46, 2003.
  • 11. A. BENALLAL, R. BILLARDON, G. GEYMONAT, Localization phenomena at the boundaries and interfaces of solids.[In:] C. S. Desai et al., [Eds.] Proc. of the 3rd Int. Conf. Constitutive Laws for Engineering Materials: Theory and Applications, 387-390, Tucson, Arizona 1987.
  • 12. J. BOBIŃSKI, J. TEJCHMAN, Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity, Computers and Concrete, 4, 433-453, 2004.
  • 13. J. BOBIŃSKI, J. TEJCHMAN, Modelling of concrete behaviour with a non-local continuum damage aproach, Archives of Hydro-Engineering and Environmental Mechanics, 52, 2, 85-105,
  • 14. DE R. BORST, H.-B. MUHLHAUS, Computational strategies for gradient continuum models with a view to localisation of deformation, Proceedings of 4th International Conference On Nonlinear Engineering Computations, 239-260, 1991.
  • 15. DE R. BORST, H.-B. MÜHLHAUS, J. PAMIN, L. SLUYS, Computational modelling of localization of deformation [In:] D. R. J. Owen, H. Onate, E. Hinton [Eds.], Proc. of the 3rd Int. Comp. Plasticity, 483-508, Pineridge Press, Swansea 1992.
  • 16. R. B. BRINKGREYE, Geomaterial models and numerical analysis of softening, PhD Thesis, Delft University of Technology, Delf t 1994.
  • 17. J. CHEN, H. YUAN, D. KALKHOF, A nonlocal damage model for elastoplastic materials based on gradient plasticity theory, Report Nr.01-13, Paul Scherrer Institut, 1-130, 2001.
  • 18. W. EHLERS, T. GRAF, Adaptive computation of localization phenomena in geotechnical applications [In:] Bifurcations and Instabilities in Geomechanics [Eds. J. Labuz and A. Drescher], Swets and Zeitlinger, 247-262, 2003.
  • 19. M. GEERS, T. PEIJS, W. BREKELMANS, DE R. BORST, Experimental monitoring of strain localization and failure behaviour of composite materials, Compos. Sci. Technol, 56, 1283-1290, 1996.
  • 20. A. E. GROEN, Three-dimensional elasto-plastic analysis of soils, PhD Thesis, Delft University, 1-114, 1997.
  • 21. G. GUDEHUS, K. NÜBEL, Evolution of shear bands in sand, Geotechnique, 54, 3, 187-201, 2004.
  • 22. M. A. Guttierrez, DE R. BORST, Deterministic and stochastic analysis of size effects and damage evaluation in quasi-brittle materials, Archives of Applied Mechanics, 69, 655-676, 1999.
  • 23. M. A. GUTIERREZ, DE R. BORST, Simulation of size-effect behaviour through sensitivity analysis, Engineering Fracture Mechanics, 70, 2269-2279, 2003.
  • 24. U. HÄUSSLER-COMBE, Size effects for plain and reinforced concrete structures, Proc. WCCM V Fifth World Congress on Computational Mechanics, Vienna 2002.
  • 25. T. J. R. HUGHES, J. WINGET, Finite rotation effects in numerical integration of rate constitutive aquations arising in large deformation analysis, International Journal for Numerical Methods in Engineering, 15, 1862-1867, 1980.
  • 26. M. JIRASEK, S. ROLSHOYEN, Comparison of integral-type nonlocal plasticity models for strain-softening materials, Int. J. Engineering Science, 41, 1553-1602, 2003.
  • 27. M. JIRASEK, S. ROLSHOYEN, P. GRASSL, Size effect on fracture energy induced by non-locality, International Journal for Numerical and Analytical Methods in Geomechanics, 28, 653-670, 2004.
  • 28. T. ŁODYGOWSKI, P. PERZYNA, Numerical modelling of localized fracture of inelastic solids in dynamic loading process, Int. J. Num. Meth. Eng., 40, 22, 4137-4158, 1997.
  • 29. B. LORET B. J. H. PREYOST, Dynamic strain localisation in elasto-visco-plastic solids, Part 1. General formulation and one-dimensional examples, Comp. Appl. Mech. Eng., 83, 247-273, 1990.
  • 30. T. MAIER, Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität, PhD Thesis, University of Dortmund, 2002.
  • 31. R. MAHNKEN, E. KUHL, Parameter identification of gradient enhanced damage models, Eur. J. Mech. A/Solids, 18, 819-835, 1999.
  • 32. T. MARCHER, P. A. VERMEER, Macro-modelling of softening in non-cohesive soils, [In:] P. A. Yermeer e tal. [Eds.], Continuous and discontinuous modelling of cohesive-frictional materials, Springer-Verlag, 89-110, 2001.
  • 33. F. MEFTAH, J. M. REYNOUARD, A multilayered mixed beam element on gradient plasticity for the analysis of localized failure modes, Mechanics of Cohesive-Frictional Materials, 3, 305-322, 1998.
  • 34. P. MENETREY, K. J. WILLAM, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 311-318, 1995.
  • 35. H.-B. MÜHLHAUS, Scherfugenanalyse bei Granularen Material im Rahmen der Cosserat-Theorie, Ingen. Archiv, 56, 389-399, 1986.
  • 36. H.-B. MÜHLHAUS, E. C. AIFANTIS, A variational principle for gradient plasticity, Int. J. Solids Structures, 28, 845-858, 1991.
  • 37. A. NEEDLEMAN, Material rate dependence and mesh sensitivity in localization problems, Comp. Meths. Appl. Mech. Eng., 67, 69-85, 1988.
  • 38. M. ORTIZ, I. C. Snuo, An analysis of a new class of integration algorithms foe elastoplastic constitutive relation, Int. I, Num. Methods in Engrg., 23, 353-366, 1986.
  • 39. J. OZBOLT, Maßstabseffekt und Duktilität von Beton- und Stahlbetonkonstruktionen, Habilitation, Universität Stuttgart, 1995.
  • 40. J. PAMIN, DE R. BORST, Simulation of crack spacing using a reinforced concrete model with an internal length parameter, Arch. App. Mech., 68(9), 613-625, 1998.
  • 41. J. PAMIN, DE R. BORST, Stiffness degradation in gradient-dependent coupled damage-plasticity, Arch. Mech., 51, 3-4, 419-446, 1999.
  • 42. J. PAMIN, Gradient-enchanced continuum models: formulation, discretization and applications, Habilitation Monograph, Cracow University of Technology, Kraków, 2004.
  • 43. R. H. J. PEERLINGS, DE R. BORST, W. A. M. BREKELMANS, M. G. D. GEERS, Gradient enhanced damage modelling of concrete fracture, Mech. Cohes.-Friction. Mater., 3, 323-342, 1998.
  • 44. G. PIJAUDIER-CABOT, Z. P. BAŻANT, Nonlocal damage theory, ASCE J. Eng. Mech., 113, 1512-1533, 1987.
  • 45. G. PIJAUDIER-CABOT, K. HAIDAR, J. F. DUBE, Non-local damage model with evolving internal length, Int. J. Num. and Anal. Meths. in Geomech, 28, 633-652, 2004.
  • 46. G. PIJAUDIER-CABOT, K. HAIDAR, A. LOUKILI, M. OMAR, Ageing and durability of concrete structures, Degradation and instabilities in geomaterials ([Eds.] F. Darve, I. Yardoulakis), Springer Verlag, 2004.
  • 47. C. POLIZZOTTO, G. BORINO, P. FUSCHI, A thermodynamic consistent formulation of nonlocal and gradient plasticity, Mech. Res. Commun., 25, 75-82, 1998.
  • 48. C. DI PRISCO, S. IMPOSIMATO, E. C. AIFANTIS, A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches, Int. J. Numer. Anal. Meth. Geomech., 26, 121-138, 2002.
  • 49. R. A. REGUEIRO, R. I. BORJA, Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity, Int. J. Solids and Structures, 38, 21, 3647-3672, 2001.
  • 50. A. SIMONE, L. SLUYS, Continous-discontinous modeling of mode-I and mode-II failure, Modelling of cohesive-frictional materials [Eds.] P. A. Yermeer, W. Ehlers, H. J. Herrmann and E. Ramm, Balkema, 323-337, 2004.
  • 51. L. SLUYS, Wave propagation, localisation and dispersion in softening solids, PhD Thesis, Delft University of Technology, 1992.
  • 52. L. J. SLUYS, DE R. BORST, Dispersive properties of gradient and rate-dependent media. Mech. Mater., 183, 131-149, 1994.
  • 53. L. STRÖMBERG, M. RISTNMAA, FE-formulation of nonlocal plasticity theory, Comput. Methods Appl. Mech. Engrg., 136, 127-144, 1996.
  • 54. J. TEJCHMAN, W. Wu, Numerical study on patterning of shear bands in a Cosserat continuum, Acta Mechanica, 99, 61-74, 1993.
  • 55. J. TEJCHMAN, I. HERLE, J. WEHR, FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localisation, Int. J. Num. Anal. Meth. Geomech., 23, 2045-2074, 1999.
  • 56. J. TEJCHMAN, G. GUDEHUS, Shearing of a narrow granular strip with polar ąuantities, J. Num. and Anal. Methods in Geomechanics, 25, 1-28, 2001.
  • 57. J. TEJCHMAN, Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Computers and Geotechnics, 31, 8, 595-611, 2004.
  • 58. W. WEIBULL, The phenomenon of rupture in solids, Proc. R. Swed. Inst. Engng. Res., 153, 1-55, 1939.
  • 59. F. H. WITTMANN, H. MIHASHI, N. NOMURA, Size effect on fracture energy using three-point bend tests, Materials and Structures, 25, 327-334, 1992.
  • 60. P. A. VERMEER, U. VOGLER, E. G. SEPTANIKA, O. STELZER, A strong discontinuity method without locking, Modelling of cohesive-frictional materials [Eds.] P. A. Yermeer, W. Ehlers, H. J. Herrmann and E. Ramm, Balkema, 381-394, 2004.
  • 61. M. R. A. VAN YLIET, J. G. M. VAN MIER, Experimental investigation of concrete fracture under uniaxial compression, Mechanics of cohesive-frictional materials, l, 115-127, 1996.
  • 62. J. H. P. DE VREE, W. A. M. BREKELMANS, M. A. J. VAN GILS, Comparison of nonlocal approaches in continuum damage mechanics, Comput. Struct., 55, 581-588, 1995.
  • 63. H. M. ZBIB, C. E. AIFANTIS, A gradient dependent flow theory of plasticity: application to metal and soil instabilities, Appl. Mech. Reviews, 42(11), 295-304, 1989.
  • 64. W. ZHOU, J. ZHAO, Y. Liu, Q. YANG, Simulation of localization failure with strain-gradient-enhanced damage mechnics, Int. J. Numer. Anal. Meth. Geomech., 26, 793-813, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0027-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.