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Abstract

A method based on Gersgorin's theorem of stabilization of positive linear
continuous-time and discrete-time systems by state feedbacks is presented.
It is shown that the stabilization problems can be reduced to suitable qua-
dratic programming problems with constraints. The method is illustrated by
two numerical examples.

Streszczenie

Przedstawiono metodg stabilizacji dodatnich, liniowych ukladéw ciaglych i
dyskretnych, za pomoca sprzezei zwrotnych od wektora stanu, opartg na
twierdzeniu Gersgorina. Wykazano, Ze problemy stabiizacji mogg by¢
sprowadzone do odpowiednich probleméw programowania kwadratowego
7 ograniczeniami liniowymi. Metode zilustrowano dwoma przykladami
liczbowymi.

1. INTRODUCTION

Roughly speaking positive linear systems are dynamical systems
in which the input, state and output spaces are spaces over the
nonnegative real numbers.

The positive linear systems are used in biomathematics, eco-
nomics, chemometries and other research areas [ 1,3,12-23].
The reachability, observability and realizability of continuous-
time positive systems were considered in [22,21,6,7]. The
realization problem for positive linear systems was investigated

n[1,9,12,18,19].

Recently in [23] Trzaska has established a criterion for asym-
ptotic stability of positive standard and singular continuous-time
linear systems.

In this paper a method of stabilization of positive linear
continuous-time and discrete-time systems by state feedbacks
will be presented. It will be shown that the stabilization problems
can be reduced to suitable quadratic programming problems
with constraints. To the best knowledge of the author this is the
first paper on stabilization problem of positive linear systems
by state feedbacks.

2. PROBLEM FORMULATION
2.1. Continuous-time systems
Consider a continuous-time linear system described by the
equations
x = Ax + Bu, x(ty) = x, (1a)
y=Cx+Du (1b)
where:
x(f) =x € R" is the state vector
u(f) = u € R™ is the input vector
¥(t) =y € RP is the output vector
A,B,C.D are real matrices of appropriate dimensions.
Let R."*” be the set of real matrices with nonnegative entries
and R,” = R,"%,

Definition 1. The system (1) is called positive if for any
xpe R, andanyu € R, wehavex € R,"andy € R,” fort>0.

A matrix 4 € R,"*"is called the Metzler matrix if all its off-
diagonal entries are nonnegative.

It is well-know [10,20] that the system (1) is positive if and
only if 4 is a Metzler matrixand B € R,"*™", C e R,7*", D € R, 7™

y=0g ey X=Ax+ Bu Y
A y=Cx+Du
K - - x
Figl

Let us assume that the positive system (1) is not asym-
ptoticaly stable. We are looking for again matrix K € R™" of
the state-feedback # = v — Kx (Fig. 1) such that the closed-loop
system matrix

A.=A—-BK 2)

is an asymptotically stable Metzler matrix, i.e. all eigenvalues
Al Ags 2y of A, have negative real parts.

2.2, Dlscrete-nme systems

Consider a discrete-time linear system described by the equations

X = Ax;+Bu; (3a)
ieZ:=10,,.}
Yi= Cxt+Dui (3b)

where:

x; € R" is the state vector

u; € R™ is the input vector,

¥; € R? 1s the output vector

A,B,C,D are real matrices of appropriate dimensions.

Definition 2. The system (3) is called positive if for any
y;eR™and any u; € R." wehavex; e R,"andy e R P forie Z,.

It is well-know [ 11,15] that the system (3) is positive if and
onlyifA e R™" BeR™ CeRF" DeRFM™

V= Olr i Ui Xi= Ax; + Bu; Vi
) ‘ vi=Cx; + Du;
X,
Fig 2

Let us assume that the positive system (3) is not asymptotically
stable. We are looking for a gain matrix K € R of the state-
feedback u; = v; — Kx; (Fig. 2) such that the matrix of positive
closed-loop system (2) is asymptotically stable, i.e. all eigen-
values of 4, have modules less than 1.

The main subject of this paper is to established conditions
under which the stabilization problem has a solution and to
give a procedure for computation of the gain matrix K.
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3. PROBLEM SOLUTION
The problem will be solved by the use of the method based
on Gersgorin's theorem [8,14] and quadratic programming [4].
To simply the notion we shall consider single input system (m = 1)
withB=band K=k € R'™".

Let
any @y o 4y, by
A= |ay an . ayl, b= b2 andklk k. k] @)
anl anZ ann )
bn
Then
ay — bk, an—biky, , a,,— bk,
A=A =Dk | ay — bk, an—boky, .., - bk, | )
a - bk, a,—bko .., a bk,

3.1. Continuous-time systems.
Theorem L. The closed-loop system matrix (5) is asympto-
tically stable Metzler matrix only if

3 (ay bk) <0 ©)

-1
Proof. It is well-known that

2z (a;—bik)= > A 0
i=1 i=1

where:

A; (i = 1,...,n) is the ith eigenvalue of (5).

1
If 3, A, > 0 then at least one eigenvalue has nonnegative real
=1

part and the closed-loop system matrix (5) is not asymptoti-
cally stable.
By Gersgorin's theorem the matrix (5) is an asymptotically
stable Metzler matrix if
a;— bk, 20 fori=j;ij=1,..n (8a)

iy =
and
bk, —a;> %, (a;-bk)fori=1,.n
P (8b)

J#i
(or bk, —a; >3, (a;—bik)forj=1,...n)
i=1
i#j
Definition 2. A set S, of all & satisfying the constraints (8)
is called the set of feasible gain matrices.

Remark 1. The set S, may be empty. For example for

i =[i %} , b= B} the set S, is empty since by (8)
k1+k2>3,k1+k2>7andklS4,k2<2'

Lemma 1. The set S is not empty if
b

i

b a; <ay fori#j (i,j=1,...n) )
’j

Proof. From (8) it follows that the set Sy is not empty if bk;
= a; for i #j and bk, > a;;.

The condition (9) follows immediately from the above
relations.

Note that (9) is not satisfied by the matrices 4 and b
in Remarks 1.

It is assumed that the S, is not empty.

The stabilization problem can be formulated as the
following quadratic programming problem:

Choose &k =[k,,k,,...,k,) maximizing the function

100 = R kg ): =Zl (a;— by (10)

subjectto k € S, i.e.
maly{(eé k) an
Remark 2. In general case the function (10) may be taken
in the form

S = é w, (a;— bk) (10)

where:
w,; >0, i= 1,..., n are some weighting coefficients.
The function (10) may be written as

k) = kDK” + ckT + Jo
where:

D: = diag[blza b22""7bl12]’ c :_2[allblsa22b25--~ﬂnnbn]vf(‘): = Zaﬁz
=1

Using ( 12) we may formulate the stabilization problem as
follows. Given 4, b, find & which maximizes the quadratic function
(12) and satisfies the constraints (8). To solve the problem we
may use any known method of quadratic programming [4].

Note that D is a positive defined matrix if b, # 0 fori=1,...,n.
Therefore the stabilization problem has a unique solution if S,
is not empty. Taking into account Lemma 1 we have the following.

Theorem 2. The stabilization problem has a unique solution
if b; = 0 for i = 1....,n and (9) holds.

Remark 3. Note that it is possible to stabilize a positive system
(1) even if it is not controllable. 12 1

For example the system (1) with 4 = [2 1 ] b= [J is

13
uncontrollable, det[b, 4b] = |1 3‘ = 0, but a gain matrix

k= [k, k,] may be found (for example k) = k, = 1.75 ) such that

. . . _|-0.75 025
A, is an asymptotically stable Metzler matrix 4, = [O. 55 0.7 5}
Example 1. Consider the positive continuous-time system (1)
13
with 4 = [4 2},b = [ﬂ . Find k = [k, k,] such that the closed-

loop system matrix
1=k, 3k
AczAfbk—LL_k:’z_k (13)

is an asymptotically stable Metzler matrix.
In this case the set S'y is defined by the constraints

k<4, k<3, k + k> 4,k + k> 6 (14)

and is not empty (Fig. 3).
To solve the problem we have to find &k, which maximize
the function

St k21 il [ L K] s f s a9

and satisfy the constraints (14). It is easy to show that the optimal
solution is k, = 4, k, = 3 (see Fig. 3) and (13) has the form

_[30
4= (5




3.2. Discrete-time system

A matrix 4 € R™" is called positive if 4 € R,™ " at least one
its entry is positive.

Theorem 3. The closed-loop system matrix (5) is asympto-
tically stable positive matrix only if

3 (@ bh)<n (16)
i=1

Proof. From (7) it follows that if 2A,> n then at least one
=1

eigenvalue has modulus greater or equal to 1 and the closed-loop
matrix (5) is not asymptotically stable.

By Gersgorin's theorem the matrix (5) is an asymptotically
stable positive matrix if

a;—bj;>0fori,j=1,.n (17a)
and

Z(ay bik) <1 for i=1,...n
. (17b)
(or 2 (a;— bk) <1 for j=1,..,n)

Definition 2. A set S, of all & satisfying the constraints (17)
is called the set of feasible gain matrices.
Remark 4. The set S’ may be empty. For example for

a=[3 1] +=[3]

the set §', is empty since by (17) k; < Lk, < 1k, +k, >3
and k; +k, > 2.

Lemma 2. The set S is not empty if

Z ~1<b, py b fori=1,.,n (18)
=1 J=1

Proof. From (17) it follows that the set % is not empty if
(17a) holds and

=

Zlay—1<b ij (19
=

Substitution

a n
From (17a) we have E >k; an 21 k< b—”
jp

H M:

of the last inequality into ( 19) yields (18).

Note that ( 18) is not satisfied by the matrices 4 and b in
Remark 4.

The stabilization problem can be formulated as the
following quadratic programming problem.

Choose k = [k, k,..., k,] minimizing the function

S = flky J,e k)= 20 (ay; — bj)? =kDET + ck7+f, (20)
i=1
subject to k € ', i.e. }Cnispf(k)

where:
D, ¢ and f, are defined in the same way as for (12).

In a similar way as for continuous-time systems the
following theorem can be proved.

Theorem 4. The stabilization problem has a unique solution
if b; # 0 for i = 1,...,n and (18) holds.

Example 2. Consider the positive discrete-time system (3)

with
108127 , _[1
A*[l.z 1.4} ’b‘u

Find k = [k, k, ] such that the closed-loop system matrix

_ (08K 12-k
Ac‘A‘b"’[l.zlekl 14-2%,] @D
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is an asymptotically stable positive matrix.
In this case the set S’k is defined by the constraints
k< 0.6,k,<0.7, k) +k, > 1 (22)
and in not empty (Fig. 4).

To solve the problem we have to find &,;,k, which minimize
the function

flky, k)= (0.8 — k)* + (1.4 - 2k,)°

[klkz][ }Bﬂ [-1.6, 56][ }26

and satisfy the constraints (22)

i s)

The optimal solution is given by k, = 0.6, k, = 0.7 (Fig. 4)
and the matrix (21) has the form

0,2 0,5
A - [0 0]

4. EXTENSIONS AND CONCLUDING REMARKS.

A method based on Gersgorin's theorem of stabilization of
positive continuous—time and discrete-time linear systems by
state feedbacks has been presented. It has been shown that the
stabilization problems can be reduced to suitable quadratic
problems with constraints. The idea of presented method can
be extended for multi-input (m > 1) continuous-time and
discrete-time linear systems with state and output feedbacks.

It is well-known [13] that the matrices 4 and

r
ap e I e
¥z "

s
y : —d ia ey
A=RAR' =| 7, % =2 7, @

oy s
—La, —dag

T
r e 2] o

have the same spectrum (eigenvalues) for any
R =diag[r ,rs,...,1r,), r; 20

Therefore, instead of the conditions (8) the following
conditions can be used

(ay~bk)>0fori=j;i,j=1,.,n

S

and

bk —a;> 2 % (a;—bk) fori=1,..n
= J

J
Via
for some r;,>0,i=1,..n.

Similarly instead of the conditions (17) we may use

%f(a,.f bk)=0for i,j=1,..n
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Y i (ay-bh)<1for i=1,..n

[

for some r, > 0,i=1,....n.

By suitable choice of #, > 0, i = 1,...,n the Gresgorin's
theorem can be extended [14] and we may solve the stabili-
zation problems in such cases when forry =r,=...=r, =1 do not
exist solutions to the problems.
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