Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Control of a distributed parameter bioreactor model is studied via linearisations and numerical approximations. Galerkin's finite element method (FEM) is applied to approximate the original nonlinear partial differential equation (PDE) model by an ordinary differential equation (ODE) system. Then linearising control which tracks a given reference is applied in the ODE system. Controllability of the original PDE system and the approximate ODE model are studied via physical considerations and linearisation pointing out a difference in the controllability properties of the two models. Some simulation results based on the FEM approximation by using realistic model parameter values illustrate feasibility of the joint FEM approximation and linearising control technique.
Czasopismo
Rocznik
Tom
Strony
135--156
Opis fizyczny
Bibliogr. 41 poz., schem., wykr.
Twórcy
autor
- Department of Computer Science and Applied Mathematics, University of Kuopio, P.O.B 1627, FIN-70211 Kuopio, Finland
autor
- Department of Computer Science and Applied Mathematics, University of Kuopio, P.O.B 1627, FIN-70211 Kuopio, Finland
autor
- Department of Applied Physics, University of Kuopio
autor
- Laboratoire d’Analyse et d’Architecture des Systèmes Centre National de la Recherche Scientifique 7, Avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France
Bibliografia
- [1] H. Amann : Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984) 593-676.
- [2] J. P. Babary, N. Tali-Maamar , T. Damak and M T. Nihtilä : Application of a collocation method for simulation of distributed parameter bioreactors. Math. Comp. Simul., 35 (1993) 303-319.
- [3] J. P. Babary, M. T. Nihtil and D. Dochain : Modelling and control algorithms for denitrification of drinking water. Proc. CESA’98 IMACS Multiconf. Comp. Engng in Systems Appl., I (1998) 760-764.
- [4] G. Bastin and D. Dochain : On-Line Estimation and Adaptive Control of Bioreactors. Elsevier, Amsterdam, 1990.
- [5] S. V. Bourrel : Estimation et Commande d’un Procédé à Paramètres Répartis Utilisé Pour le Traitement Biologique de l’ Eau à Potabiliser. Thesis, Université Paul Sabatier, Toulouse, France, 1996.
- [6] C. I. Byrnes and A. Isidori : Exact linearization and zero dynamics. Proc. 29th IEEE Conf. On Dec. and Contr., Honolulu, USA, (1990) 2080-2084.
- [7] C. I. Byrnes , D. S. Gilliam and Jianqiu H E : Root-locus and boundary feedback design for a class of distributed parameter systems. SIAM J. Contr. Optimiz., 32 (1994) 1364-1427.
- [8] B. Charlet, J. Levine and R. Marino : Sufficient conditions for dynamic state feedback linearization. SIAM J. Contr. Optim. Vol., 29 (1991) 38-57.
- [9] P. V. Danckwerts : Continuous flow systems. Chem. Engng Sci., 2 (1953) 1-13.
- [10] M. Crouzeix , V. Thomee and L. B. Wahlbin : Error estimates for spatially discrete approximations of semilinear parabolic equations with initial data of low regularity. Math. Comput., 53 (1989) 25-41.
- [11] R. F. Curtain and A. J. Pritchard : Infinite Dimensional Linear Systems Theory. Lecture Notes in Contr. Inf. Sci., 8 Springer, Berlin, 1978.
- [12] R. F. Curtain and H. J. Swart : An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Appl. Maths., Springer, Berlin, 1995.
- [13] A. Isidori : Nonlinear Control Systems. 2nd Ed. Springer, Berlin, 1989.
- [14] A. Isidori and C. I. Byrnes : Output regulation of nonlinear systems. IEEE Trans. Autom. Contr., 35 (1990) 131-140.
- [15] J. Jacob , J. M. Le Lann , H. Pingaud , B. Koehret, K. M. N’guyen And B. Capdeville : Dynamic simulation of submerged packed biofilters in wastewater treatment plants. Comp. and Chem. Engng, (suppl.) 18 (1994) 639-643.
- [16] J. Jacob , H. Pingaud , J. M. Le Lann , S. Bourrel , J. P. Babary, and B. Capdeville : Dynamic simulation of biofilters. Simul. Practice and Th., 4 (1996) 335-348.
- [17] S. Julien , J. P. Babary and M. T. Nihtilä : On modelling of boundary conditions and estimation for fixed-bed bioreactors. Math. Modelling of Systems, 1 (1995) 233-243.
- [18] D. Contois : Kinetics of bacterial growth relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol., 21 (1959) 40.
- [19] D. Dochain , J. P. Babary and N. Tali-Maamar : Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation. Automatica, 28 (1992) 873-883.
- [20] D. Dochain : Contribution to the analysis and control of distributed parameter systems with application to (bio)chemical processes and robotics. Thesis, Université Catholique de Louvain, Belgium, 1994.
- [21] J. W. Grizzle , M. D. Dibenedetto and F. Lamnabhi-Lagarrigue : Necessary conditions for asymptotic tracking in nonlinear systems. IEEE Trans. Autom. Contr., 39 (1994) 1782-1794.
- [22] J. A. Goldstein and J. Tervo : Existence of solutions for a system of nonlinear partial differentia equations related to bioreactors. Dynamic Syst. and Appl., 5 (1996) 197-210.
- [23] J. A. Goldstein : Semigroups of Linear Operators and Applications. Univ. Press, Oxford, 1985.
- [24] H. P. Helfrich : Error estimates for semidiscrete Galerkin type approximations to semilinear evolution equations with nonsmooth initial data: Numer. Math., 51 (1987) 559-569.
- [25] K. S. Hong and J. Bentsman : Direct adaptive control of parabolic systems: Algorithm synthesis and convergence and stability analysis. IEEE Trans. Autom. Contr., 39 (1994) 2018-2033.
- [26] T. Kato : Nonlinear evolution equations in Banach spaces. Proc. Symp. Appl. Math., (1964) 50-67.
- [27] Y. Lin and T. Zhang : Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. J. Math. Anal. Appl., 165 (1992) 180-191.
- [28] J. L. Lions : Optimal Control of Systems Described by Partial Differential Equations. Springer, Berlin, 1971.
- [29] M. T. Nihtilä , J. P. Babary and J. P. Kaipio : Eigenvalue problems arising in the control of distributed parameter bioreactors. Contr. Engng Practice, 4 (1996) 1015-1021.
- [30] M. T. Nihtilä , N. Tali-Maamar and J. P. Babary : Controller design for a nonlinear distributed parameter system via a collocation approximation. Proc. IFAC Symp. on Nonl. Contr. System Design, NOLCOS’92, Bordeaux, France (1992) 447-452.
- [31] M. T. Nihtilä , J. Tervo and J. P. Kaipio : Simulation of a distributed parameter bioreactor by FEM approach. Simul. Practice and Th., 5 (1997) 199-216.
- [32] M. T. Nihtilä , J. Tervo , J. P. Kaipio and J. P. Babary : On linearising control of a distributed parameter bioreactor. Proc. 15th IMACS World Congr., Berlin, 5 (1997) 221-226.
- [33] P. A. Orner, P. F. Salamon, Jr. and Wanyoung Yu : Least squares simulation of distributed systems. IEEE Trans. Autom. Contr., AC-20 (1975) 75-83.
- [34] A. Pazy : Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983.
- [35] J. F. Pommaret and A. Quadrat : Formal obstruction to the controllability of partial differentia control systems. Proc. 15th IMACS World Congr., Berlin, 5 (1997) 209-214.
- [36] J. Romanainen : Numerical Strategies in Solving Gas-Liquid Reactor Models. Thesis, Abo Akademi Univ., Finland, 1994.
- [37] N. Tali-Maamar : Modélisation, analyse et commande d’un procédé biotechnologique à gradient spatial de concentration. Thesis, Université Paul Sabatier, Toulouse, France, 1994.
- [38] N. Tali-Maamar , T. Damak , J. P. Babary and M. T. Nihtilä : Application of a collocation method for simulation of distributed parameter bioreactors. Math. Comp. Simul., 35 (1993) 303-319.
- [39] V. Thomee and L. Wahlbin : On Galerkin methods in semilinear parabolic problems. SIAM J. Numer. Anal., 12 (1975) 378-389.
- [40] V. Thomee : Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Math., Springer, Berlin, 1054 1984.
- [41] J. V. Villadsen and M. L. Michelsen : Solution of Differential Equation Models by Polynomial Approximation. Prentice-Hall, Englewood Cliffs, 1978
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW9-0005-0874