PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinematics of mobile manipulators : a control theoretic perspective

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mobile manipulator is a robotic system composed of a mobile platform and a manipulator mounted atop of the platform. From control theoretic viewpoint the kinematics of the mobile manipulator can be represented by means of a driftless control system with outputs. Assuming this kind of representation we define basic concepts concerned with the kinematics of mobile manipulators and develop a consistent theory involving these concepts in a way completely analogous to the existing theory of stationary manipulators. A key ingredient of our approach is a concept of endogenous configuration of a mobile manipulator that comprises a control function of the platform and a joint position of the manipulator. Relying on this concept we introduce the instantaneous kinematics, analytic Jacobian, regular and singular configurations, a Jacobian pseudoinverse, a dexterity matrix and a dexterity ellipsoid. Then we formulate the inverse kinematic problem (the motion planning problem), and derive two exemplary algorithms: the Jacobian pseudoinverse (Newton) algorithm and the Jacobian adjoint (Jacobian transpose) algorithm, that are applicable at regular configurations. In a vicinity of singular configurations a version of the singularity robust pseudoinverse is provided. Dexterity ellipsoids and inverse kinematics algorithms are illustrated with computer simulations.
Rocznik
Strony
195--221
Opis fizyczny
Bibliogr. 53 poz., rys., wzory
Twórcy
autor
  • Institute of Engineering Cybernetics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
  • Institute of Engineering Cybernetics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50–372 Wrocław, Poland
  • Institute of Engineering Cybernetics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50–372 Wrocław, Poland
Bibliografia
  • [1] B. Bayle, I. Y. Fourquet and M. Renaud: Manipulability analysis for mobile manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, (2001), 1251-1256.
  • [2] C. Canudas De Wit, B. Siciliano and G. Bastin: Theory of Robot Control. Springer-Verlag, New York, 1996.
  • [3] Y. Chitour and H. J. Sussmann: Motion planning using the continuation method. Essays on Mathematical Robotics. J. Baillieul, S. S. Sastry and H. J. Sussmann, (Eds), Springer-Verlag, New York, (1998), 91-125.
  • [4] R. Colbaugh: Adaptive stabilization of mobile manipulators. Proc. American Control Conf., Philadelphia, Pennsylvania, (1998), 1-5.
  • [5] B. D’andrea-Novel, G. Campion and G. Bastin: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Robotics Res., 14(6), (1995), 543-559.
  • [6] A. De Luca, G. Orioli and M. Vendittelli: Stabilization of the unicycle via dynamic feedback linearization, Preprints 6th IFAC Symp. Robot Control, Vienna, Austria, (2000), 397-402.
  • [7] J. P. Desai and V. Kumar: Nonholonomic motion planning for multiple mobile manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, 3 (1997), 3409-3414.
  • [8] A. Divelbiss, S. Seereeram and J. T. Wen: Kinematic path planning for robots with holonomic and nonholonomic constraints. Essays on Mathematical Robotics. J. Baillieul, S.S. Sastry and H.J. Sussmann, (Eds), Springer-Verlag, New York, (1998), 127-150.
  • [9] K. L. Doty, C. Melchiori, E. M. Schwartz and C. Bonivento: Robot manipulability. IEEE Trans. Robot. Automat., 11(3), (1995), 462-468.
  • [10] I. Dulęba: Algorithms of Motion Planning for Nonholonomic Robots. Wrocław University of Technology Publishers, Wrocław, 1998.
  • [11] I. Dulęba and J. Sasiadek: Energy-efficient Newton-based nonholonomic motion planning. Proc. American Control Conf., Arlington, VI, (2001), 1859-1863.
  • [12] G. Foulon, J. Y. Fourquet and M. Renaud: On coordinated tasks for nonholonomic mobile manipulators. Preprints 5th IFAC Symp. Robot Control, Nantes, France, (1997), 491-498.
  • [13] J. F. Gardner and S. A. Velinsky: Kinematics of mobile manipulators and implications for design. J. Robotic Systems, 17(6), (2000), 309-320.
  • [14] N. A. M. Hootsmans and S. Dubowsky: Large motion control of mobile manipulators including vehicle suspension characteristics. Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, (1991), 1336-2341.
  • [15] Q. Huang, K. Tanie and S. Sugano: Coordinated motion planning for a mobile manipulator considering stability and manipulation,. Int. J. Robotics Res., 19(8), (2000), 732-742.
  • [16] J. Jakubiak: Computing inverse kinematics for mobile manipulators. Proc. 7th Nat. Robotics Conf.,L˛adek-Zdrój, Poland, (2001), 273-282 (in Polish).
  • [17] J. Jakubiak and K. Tchoń : The continuous inverse kinematic problem for mobile manipulators: a case study in the dynamic extension. Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, (2001), 2401-2406.
  • [18] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holberg and A. Casai: Coordination and decentralized cooperation of mobile manipulators. J. Robotic Systems, 13(11), (1996), 755-764.
  • [19] J.-C. Latombe: Robot Motion Planning. Kluwer, Boston, 1993.
  • [20] H. Lee, H. T. Takubo, H. Arai and K. Tanie: Control of mobile manipulators for power assist systems. J. Robotic Systems, 17(9), (2000), 469-477.
  • [21] D. G. Luenberger: Optimization by Vector Space Methods. J. Wiley, New York, 1999.
  • [22] W. Miksch and D. Schroeder: Performance-functional based controller design for a mobile manipulator. Proc. IEEE Int. Conf. on Robotics and Automation, Nice, France, (1992), 227-232.
  • [23] R. M. Murray, Z. Li and S. S. Sastry: Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, 1994.
  • [24] R. Muszyński and K. Tchoń: Dexterity ellipsoid for mobile robots. Proc. 6th Int. Symp. on Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland, (2000), 665-670.
  • [25] Y. Nakamura: Advanced Robotics: Redundancy and Optimization. AddisonWesley, 1991.
  • [26] E. Papadopoulos and S. Dubowsky: Coordinated manipulator/spacecraft motion control for space robotics. Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, (1991), 1696-1701.
  • [27] C. Perrier, P. Dauchez and F. Pierrot: A global approach for motion generation of non-holonomic mobile manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, (1998), 2971-2976.
  • [28] F. G. Pin, J.-Ch. Culioli and D. B. Reister: Using minimax approaches to plan optimal task commutation configurations for combined mobile platformmanipulator systems. IEEE Trans. Robot. Automat., 10(1), (1994), 44-54.
  • [29] F. G. Pin, K. A. Morgansen, F. A. Tulloch, Ch. J. Hacker and K. B. Gower: Motion planning for mobile manipulators with a non-holonomic contraint using the FSP (Full Space Parameterization) method. J. Robotic Systems, 13(11), (1996), 723-736.
  • [30] D. O. Popa and J. T. Wen: Singularity computation for iterative control of nonlinear affine systems. Asian J. Control, 2(2), (2000), 57-75.
  • [31] W. J. Rugh: Linear System Theory. Prentice-Hall, 1997.
  • [32] L. Sciavicco and B. Siciliano: Modelling and Control of Robot Manipulators. The McGraw-Hill, New York, 1996.
  • [33] H. Seraji: A unified approach to motion control of mobile manipulators. Int. J. Robotics Res., 17(2), (1998), 107-118.
  • [34] E. D. Sontag: Mathematical Control Theory. Springer-Verlag, New York, 1990.
  • [35] E. D. Sontag: A general approach to path planning for systems without drift. Essays on Mathematical Robotics, J. Baillieul, S.S. Sastry and H.J. Sussmann, (Eds), Springer-Verlag, New York, (1998), 151-168.
  • [36] H. J. Sussmann: Lie brackets, real analyticity and geometric control. Differential Geometric Control Theory, R.W. Brockett, R.S. Millman and H.J. Sussmann, (Eds), Birkhäuser, Boston, (1983), 1-116.
  • [37] H. J. Sussmann: New differential geormetric methods in nonholonomic path finding. Systems, Models, and Feedback, A. Isidori and T.J. Tarn, (Eds), Birkhäuser, Boston, (1992), 365-384.
  • [38] H. G. Tanner and K. J. Kyriakopoulos: Nonholonomic motion planning for mobile manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, (2000), 1233-1238.
  • [39] T. J. Tarn and S. P. Yang: Modeling and control for underwater robotic manipulators – an example. Proc. IEEE Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, (1997), 2166-2171.
  • [40] K. Tchoń : On kinematic singularities of nonholonomic robotic systems. RoManSy 13 Theory and Practice of Robots and Manipulators, A. Morecki, G. Bianchi and C. Rzymkowski, (Eds), Springer-Verlag, Wien, (2000), 75-84.
  • [41] K. Tchoń : The kinematics of mobile manipulators. Proc. 7th Nat. Robotics Conf., Lądek-Zdrój, Poland, (2001), 43-58 (in Polish).
  • [42] K. Tchoń: Repeatability of inverse kinematics algorithms for mobile manipulators, submitted for publication.
  • [43] K. Tchoń and J. Jakubiak: The inverse kinematic problem for mobile manipulators, Proc. 6th Int. Symp. Methods and Models in Automat. Robotics, Międzyzdroje, Poland, (2000), 567-572.
  • [44] K. Tchoń and J. Jakubiak: Extended Jacobian inverse kinematics algorithms for mobile manipulators, submitted for publication.
  • [45] K. Tchoń , J. Jakubiak and K. Zadarnowska: Adjoint dexterity inverse kinematics algorithm for mobile manipulators. Proc. 10th Int. Conf. Advanced Robotics, Budapest, Hungary, (2001), 107-112.
  • [46] K. Tchoń , A. Mazur, I. Dulęba, R. Hossa and R. Muszyński: Manipulators and Mobile Robots: Modelling, Motion Planning, and Control. Academic Publishing House, Warsaw, 2000, (in Polish).
  • [47] K. Tchoń and R. Muszyński: Instantaneous kinematics and dexterity of mobile manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, (2000), 2493-2498.
  • [48] Y. Yamamoto and X. Yun: Coordinating locomotion and manipulation of a mobile manipulator. IEEE Trans. Autom. Control, 39(6), (1994), 1326-1332.
  • [49] Y. Yamamoto and X. Yun: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robot. Automat., 12(5), (1994), 816- 824.
  • [50] Y. Yamamoto and X. Yun: Unified analysis on mobility and manipulability of mobile manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, Michigan, (1999), 1200-1206.
  • [51] T. Yoshikawa: Analysis and control of robot manipulators with redundancy. Robotics Research, M. Brady and R. Paul, (Eds), MIT Press, Cambrigde, MA, 735-747.
  • [52] T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robotics Res., 4(2), (1985), 3-9.
  • [53] K. Zadarnowska: Quality measures for stationary nad mobile manipulators. Proc. 7th Nat. Robotics Conf., Lądek-Zdrój, Poland, (2001), 91-100 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW9-0004-0778
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.