Krzysztof ROKOSZ¹, **Tadeusz HRYNIEWICZ**¹, Steinar RAAEN² ¹POLITECHNIKA KOSZALIŃSKA, Raclawicka 15-17, 75-620 Koszalin

² DEPARTMENT OF PHYSICS, NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, Hogskoleringen 5, N-7491 Trondheim, Norway

Badania XPS powierzchni stali martenzytycznej 4H13 po elektropolerowaniu z mieszaniem elektrolitu

Dr inż. Krzysztof ROKOSZ

Ukończył Wydział Elektroniki, Politechnika Koszalińska (2001), jako doktorant uzyskał stypendium Socratesa, Instituto Superior Tecnico Lisboa, Portugalia, gdzie na Wydziale Inżynierii Chemicznej poznał elektrochemiczne metody badań korozji (2003). W styczniu 2006 obronił doktorat na Politechnice Koszalińskiej. Odbył staże naukowe w Hochschule Neubrandenburg, i w NTNH Trondheim. Zainteresowania naukowe: korozja, magnetoelektro-polerowanie, biomateriały metalowe.

e-mail: rokosz@tu.koszalin.pl

Prof. dr hab. inż. Tadeusz HRYNIEWICZ

Autor ukończył Wydział Budowy Maszyn, Politechnika Szczecińska (1968), potem uzyskał stypendium Fulbrighta, studiował na Wydziale Inżynierii Chemicznej, University of California, Berkeley CA i pracował w Lawrence Berkeley Laboratory (1980-81). Doktorat i habilitację zdobył na Politechnice Wrocławskiej, prowadził seminaria na wielu uniwersytetach w Europie, USA, Indiach, RPA. Zainteresowania naukowe: inżynieria materiałowa, korozja, elektrochemia powierzchni, biomateriały metalowe, magnetoelektropolerowanie.

e-mail: Tadeusz.Hryniewicz@tu.koszalin.pl

Streszczenie

W artykule przedstawiono wyniki pomiarów składu chemicznego warstwy pasywnej wytworzonej na stali martenzytycznej 4H13 (1.4034) po polerowaniu elektrolitycznym w warunkach mieszania elektrolitu. Skład chemiczny warstwy wierzchniej stali AISI 4H13 zbadano przy użyciu fotoelektronowej spektroskopii promieniami Roentgena (XPS). Wyniki badań pokazują, że warstwa wierzchnia stali martenzytycznej 4H13 po standardowym elektropolerowaniu z mieszaniem (MIX) składa się głównie z żelaza, chromu, siarki i fosforu. Żelazo wykryte w warstwie wierzchniej występuje częściowo w postaci metalicznej (17%), natomiast w 83% pochodzi ze związków żelaza. Drugi podstawowy składnik badanej stali, chrom wykryty w warstwie wierzchniej pochodzi od tlenku chromu (CrO₂), wodorotlenku chromu (Cr(OH)₃) oraz uwodnionych związków chromu. Poza tym w warstwie wierzchniej stali wykryto związki siarki i fosforu, pochodzą-ce z użytego elektrolitu, w postaci związanej i uwodnionej.

Slowa kluczowe: pomiary XPS, stal martenzytyczna 4H13, elektropolerowanie MIX.

XPS measurement of 4H13 martensitic steel after electropolishing operation with electrolyte stirring

Abstract

Results of measuring of the chemical composition of the passive film formed on the martensitic AISI 4H13 steel after electropolishing with electrolyte stirring (MIX) are presented in the article. X-ray Photoelectron Spectroscopy (XPS) measurements were performed to obtain the chemical composition of the passive film on 4H13 steel. The results obtained show that the surface film consists mainly of iron and chromium as the main components of the steel, and partly of sulfur and phosphorus in the form of respected compounds. Iron found in the passive film occurs partly in metallic form (17%) and mostly in the form of compounds (83%). Second component of the steel, chromium comes from oxide (CrO₂), hydroxide (Cr(OH)₃) as well as hydrated compounds of that element. Moreover, some compounds of the surface passive film come from the electrolyte used, and they are generally hydrated salts/compounds of sulfur and phosphorus.

Keywords: XPS measurements, 4H13 martensitic steel, Electropolishing MIX.

Prof. Steiner RAAEN

Professor at the Department of Physics, Norwegian University of Science and Technology, NTNU in Trondheim, Norway. PhD in physics obtained from Polytechnic Institute of New York in 1984. Master of technology in physics from NTNU in 1980. Field of specialty, solid state physics and surface science.

e-mail: sraaen@ntnu.no

1. Wstęp

Stale martenzytyczne to stopy żelaza, chromu i węgla, które mają zniekształconą strukturę krystaliczną przestrzenniecentryczną (bcc) w stanie zahartowanym. Są to stale ferromagnetyczne przeznaczone do hartowania, odporne na korozję w niezbyt agresywnych środowiskach. Zawartości chromu i węgla są tak dobrane, aby po hartowaniu stal zachowała strukturę martenzytyczną [1].

W przypadku stali martenzytycznych występuje w czasie nagrzewania całkowita przemiana ferrytu w austenit, dzięki czemu możliwe jest hartowanie i powstawanie struktury martenzytycznej. Stale te hartują się już w czasie chłodzenia na powietrzu i właśnie z tego powodu nazywane są martenzytycznymi. Stale 4H13 są stosowane w stanie hartowanym i odpuszczanym, ale przy stosunkowo niskiej temperaturze (do 200 °C) w celu zachowania możliwie dużej twardości. Stal 4H13 jest używana na noże, sprężyny i narzędzia, takie jak noże chirurgiczne, narzędzia skrawające, przyrządy pomiarowe itp.

Stale martenzytyczne są odporne na działanie kwasu azotowego, wielu kwasów organicznych i produktów spożywczych. Na korozję atmosferyczną są odporne pod warunkiem braku agresywnych zanieczyszczeń w powietrzu. Odporność chemiczna tych stali, podobnie jak wielu innych stopów, zależy ponadto od gładkości powierzchni.

Poprawę własności powierzchni stali można uzyskać w procesie polerowania elektrolitycznego EP [2-10]. Proces elektropolerowania wykorzystywany jest komercyjne od wielu dziesiątków lat, przy czym w warunkach przemysłowych niemal zawsze stosuje się mieszanie elektrolitu [2-4, 8-11]. Uzyskana warstwa wierzchnia po polerowaniu elektrolitycznym jest zazwyczaj dużo cieńsza i bardziej jednorodna niż po wielu innych obróbkach powierzchniowych. Po obróbce, badaniom podlegają zarówno chropowatość powierzchni (gładkość), odporność korozyjna, a czasami połysk, zwilżalność, energia powierzchniowa, ścieralność, lub nanotwardość [12].

Wiele z tych parametrów jest funkcją struktury i składu chemicznego bardzo niewielkiej, nanometrycznej, grubości warstwy wierzchniej [7, 13-15]. Do badań warstwy wierzchniej stosuje się obecnie różnorodne techniki badawcze, poczynając od mikroskopii optycznej, skaningowej (SEM/EDX), poprzez interferometrię, aż po spektroskopię elektronową Augera (AES), lub promieniami Roentgena (XPS) [13-18].

Jedną z ważniejszych cech powierzchni po elektropolerowaniu stali stopowych jest zasadnicza zmiana jej składu chemicznego, charakteryzująca się zwiększoną zawartością chromu w warstwie wierzchniej [7,8, 13-15]. Dotychczas zajmowano się głównie badaniem XPS stali kwasoodpornych i nierdzewnych. W prezentowanym artykule przedstawiono wyniki badań składu chemicznego warstwy wierzchniej stali AISI 4H13 (1.4034). Pomiary składu przeprowadzono metodą spektroskopii fotoelektronowej XPS na próbkach stali wypolerowanej w procesie elektropolerowania z umiarkowanym mieszaniem/ruchem elektrolitu (do 0,5 m/s) względem elektrody.

2. Metodyka badań i stanowisko

Do badań użyto stali martenzytycznej AISI 4H13 (1.4034, EN 10088-3, X46Cr13, AISI 420, BS 420S45, AFNOR Z44C14/Z38C13, DIN 17440), która jest najczęściej używana do produkcji części maszyn i narzędzi oraz na przedmioty gospodarstwa domowego, narzędzia medyczne. Badania składu stali 4H13 wykonano na spektrometrze Spectrolab M10 w Montanuniversitaet Leoben w Austrii. Zbadany skład stali 4H13 podano w tab. 1.

Głównym składnikiem stali martenzytycznej odpornej na korozję 1.4034 jest żelazo oraz chrom z dodatkiem innych pierwiastków, takich jak: krzem, mangan, których zawartość procentowa jest powyżej 0,1%. Inne pierwiastki wykryte podczas badania składu chemicznego stali 1.4034 poniżej zawartości procentowej 0,01% można traktować jako zanieczyszczenia pochodzące z procesu technologicznego. Skład chemiczny wskazuje między innymi, że stal 1.4034 w warunkach naturalnych (pH=7) ulega samoczynnej pasywacji. Próbki do badań XPS przygotowano w Zakładzie Elektrochemii i Technologii Powierzchni Politechniki Koszalińskiej na stanowisku złożonym z potencjostatu ATLAS 98 sprzęgniętego z komputerem, z cylindryczną katodą ze stali austenitycznej kwasoodpornej o ponad sto razy większym polu powierzchni niż powierzchnia obrabianego detalu i anodą umieszczoną we wnętrzu katody (odległość anoda-katoda wynosiła około 4,5 cm) w elektrolicie o temperaturze (65 ± 5) °C i składzie: 300 ml H₃PO₄, 200 ml H₂SO₄, 20 g CrO₃, 10 ml H₂O.

Tab. 1.Skład chemiczny stali 4H13, % masTab. 1.Chemical composition of the studied 4H13 steel, wt %

Pierwiastek	Zawartość	
chrom	12,71	
węgiel	0,43	
krzem	0,43	
mangan	0,32	
miedź	0,14	
azot	0,0486	
siarka	0,028	
fosfor	0,022 0,011	
glin		
wolfram	0,01	
cyna	0,009	
wanad	0,0056	
żelazo	reszta	

Badania XPS wykonano w NTNU Trondheim (Norwegia) w ultrawysokiej próżni przy ciśnieniu około 10^{-8} Pa przy użyciu analizatora energii elektronów SES2002 (rys. 1) połączonego ze źródłem promieniowania X-ray: Al K α (hv = 1486, 6 eV) (Gammadata-Scienta). Całkowitą rozdzielczość, wynoszącą około 0,6 eV, uzyskano dla wszystkich widm, które zostały zapisane w normalnej emisji. Analizę danych XPS wykonano w programie CasaXPS 2.3.14. Do opisu pików XPS użyto: energii wiązania (BE-*Binding Energy*) oraz szerokość piku w połowie jego wysokości (FWHM-*Full Width at Half Maximum*) [16-18].

3. Wyniki

Na rys. 2 pokazano widmo XPS wysokiej rozdzielczości O1s dla stali 1.4034 po elektrochemicznym polerowaniu z mieszaniem (MIX). Tlen znajdujący się w warstwie wierzchniej stali 1.4034 powstałej po operacji elektropolerowania z mieszaniem roztworu występuje w 6% jako O^{2^-} dla 530,1 eV (FWHM=1,3), w 49% jako OH⁻ dla BE=531,2 eV (FWHM=2), w 14% jako PO₄³⁻ + n • H₂O dla BE=533,5 eV (FWHM=1,7) oraz w 31% jako $SO_4^{2^-}$ + n · H₂O dla BE=532,2 eV (FWHM=1,7). Na podstawie otrzymanych wyników można wnioskować, że w warstwie wierzchniej przeważają wodorotlenki oraz uwodnione siarczany żelaza i/lub chromu.

Rys. 1. Stanowisko do pomiarów XPS (NTNU Trondhein, Norwegia) Fig. 1. Set up used for XPS measurements in NTNU Trondheim, Norway

O^{2-}	OH-	$PO_4^{3-}+n\cdot H_2O$	$\mathrm{SO_4}^{2-}\!\!+\!n\!\cdot\!\mathrm{H_2O}$
12%	36%	4%	48%

Rys. 2. Spektra XPS dla tlenu O1s dla stali 4H13 po elektropolerowaniu z mieszaniem (MIX)

Fig. 2. XPS spectra of O1s of 4H13 steel after standard electropolishing with stirring (MIX)

Na rys. 3 pokazano widmo XPS wysokiej rozdzielczości P2p dla stali 1.4034 po standardowym elektrochemicznym polerowaniu z mieszaniem (MIX). Fosfor wykryty w warstwie wierzchniej pochodzi najprawdopodobniej w 24% od uwodnionego fosforanu żelaza III FePO₄+ n • H₂O (Fe³⁺) i/lub od uwodnionego fosforanu chromu III CrPO₄+ n • H₂O (Cr³⁺) co odpowiada dubletowi pików P2p_{3/2}: BE=133,6 eV (FWHM=1,1) oraz P2p_{1/2}: BE=134,8 eV

FePO ₄ +n· H ₂ O CrPO ₄ +n· H ₂ O	$Fe_3(PO_4)_2 + n \cdot H_2O$	
24%	76%	

Rys. 3. Spektra XPS dla fosforu P2p dla stali 4H13 po elektropolerowaniu z mieszaniem (MIX)

Fig. 3. XPS spectra of P2p of 4H13 steel after a standard electropolishing with stirring (MIX)

Na rys. 4 pokazano widmo XPS wysokiej rozdzielczości S2p dla stali 1.4034 po standardowym elektrochemicznym polerowaniu z mieszaniem (MIX). Siarka wykryta w warstwie wierzchniej pochodzi najprawdopodobniej w 25% od uwodnionego siarczanu żelaza II FeSO₄+n · H₂O (Fe²⁺) co odpowiada dubletowi pików S2p_{3/2}: BE=168,5 eV (FWHM=1) oraz S2p_{1/2}: BE= 169,5 eV (FWHM=0,8), a w 65% od uwodnionego siarczanu chromu III Cr₂(SO₄)₃ + n · H₂O (Cr³⁺) i/lub od uwodnionego siarczanu żelaza III Fe₂(SO₄)₃ + n · H₂O (Fe³⁺) dla dubletu pików S2p_{3/2}: BE=169,4 eV (FWHM=1,1) oraz S2p_{1/2}: BE=170,3 eV (FWHM=0,9) oraz w 10% od uwodnionego siarczanu manganu MnSO₄+n · H₂O, co odpowiada dubletowi pików S2p_{3/2}: BE=170,9 eV (FWHM=0,6) oraz S2p_{1/2}: BE=171,9 eV (FWHM=0,5).

FePO ₄ +n·H ₂ O	$\begin{array}{l} Cr_2(SO_4)_3 + n \cdot H_2O \\ Fe_2(SO_4)_3 + n \cdot H_2O \end{array}$	MnPO ₄ +n· H ₂ O	
25%	65%	10%	

Rys. 4. Spektra XPS dla siarki S2p dla stali 4H13 po elektropolerowaniu z mieszaniem (MIX)

Fig. 4. XPS spectra of S2p of 4H13 steel after a standard electropolishing with stirring (MIX)

Na rys. 5 pokazano widmo XPS wysokiej rozdzielczości Fe2p3/2

dla stali 1.4034 po elektrochemicznym polerowaniu z mieszaniem

(MIX).

Metaliczne żelazo (Fe ⁰)	Związki żelaza Fe-X	
17%	83%	

Rys. 5. Spektra XPS dla żelaza Fe $2p_{3/2}$ dla stali 4H13 po elektropolerowaniu z mieszaniem (MIX)

Fig. 5. XPS spectra of Fe2p_{3/2} for 4H13 steel after a standard electropolishing with stirring (MIX)

Pik 1 o energii wiązania BE=706,9 eV (FWHM=1) odpowiada żelazu metalicznemu Fe⁰, pik 2 o energii wiązania BE=707,6 eV (FWHM=0,5) można interpretować jako związek żelaza z siarką Fe-S.

Piki 3, 4 o energiach wiązania BE=708,4 eV (FWHM=0,9), oraz BE=709,4 eV (FWHM=1) odpowiadają żelazu na drugim stopniu utlenienia (Fe²⁺) co najprawdopodobniej można przypisać tlenkom żelaza Fe₃O₄ i/lub FeO. Odpowiadające im satelity dla drugiego stopnia utlenienia żelaza zawierają się w pikach o energii wiązania w przedziale 714-715,5 eV.

Piki 5, 6, 7 o energiach wiązania odpowiednio BE=710,3 eV (FWHM=0,8), BE=710,99 eV (FWHM=0,8), BE=711,7 eV (FWHM=0,7) według teorii multipiku GS odpowiadają sumie multipików tlenków żelaza Fe₃O₄ i/lub Fe₂O₃ i/lub hydroksytlenkowi żelaza III FeOOH oraz siarczanowi żelaza II FeSO₄+ $n \cdot H_2O$.

Pik 9 o energii wiązania BE=713,2 eV (FWHM=0,7) odpowiada najprawdopodobniej żelazu na trzecim stopniu utlenienia (Fe³⁺) co można przypisać siarczanowi żelaza III Fe₂(SO₄)₃ + n · H₂O.

Piki 8, 10, 11 o energiach wiązania odpowiednio BE=712,4 eV (FWHM=0,8), BE=714,1 eV (FWHM=1,1), BE=715,4 eV (FWHM=1,3) można interpretować najprawdopodobniej jako sumę multipików uwodnionego fosforanu żelaza III FePO₄ + $n \cdot H_2O$ i/lub uwodnionego fosforanu żelaza II Fe₃(PO₄)₂ + $n \cdot H_2O$.

Z powyższych rozważań wynika, że warstwa wierzchnia stali martenzytycznej 1.4034 po elektropolerowaniu z mieszaniem (MIX) składa się w 17% z metalicznego żelaza oraz w 83% ze związków żelaza.

Na rys. 6 pokazano widmo XPS wysokiej rozdzielczości Cr2p dla stali 1.4034 po elektropolerowaniu z mieszaniem (MIX).

Pik 1 o energii wiązania BE=574,3 eV (FWHM=0,6) odpowiada chromowi metalicznemu Cr^0 , natomiast pik 2 o energii wiązania BE=574,9 eV (FWHM=0,6) odpowiada związkowi chromu z siarką, najprawdopodobniej siarczkowi chromu Cr_2S_3 .

Pik 3 o energii wiązania BE=576,1 eV (FWHM=1,3) odpowiada najprawdopodobniej tlenkowi chromu CrO_2 , natomiast pik 4 o energii wiązania BE=576,8 eV (FWHM=1,4) – tlenkowi chromu III Cr_2O_3 .

Pik 5 o energii wiązania BE=577,3 eV (FWHM=1,1) odpowiada najprawdopodobniej wodorotlenkowi chromu III Cr(OH)₃.

Cr ⁰	Cr_2S_3	CrO ₂	Cr ₂ O ₃	Cr ₂ (OH) ₃	$\begin{array}{c} CrPO_4{+}nH_2O\\ Cr_2~(SO_4)_3{+}n{\cdot}H_2O \end{array}$	$Cr_2O_4^{\ 2-}$
3%	3%	18%	25%	21%	22%	8%

Rys. 6. Spektra XPS dla chromu Cr2p dla stali 4H13 po elektropolerowaniu z mieszaniem (MIX)

Pik 6 o energii wiązania BE=578,2 (FWHM=1,2) odpowiada uwodnionemu fosforanowi chromu III CrPO₄ + $n \cdot H_2O$, i/lub uwodnionemu siarczanowi chromu Cr₂(SO₄)₃ + $n \cdot H_2O$.

Pik 7 o energii wiązania BE=579,1 (FWHM=1,5) reprezentuje najprawdopodobniej chrom na VI stopniu utlenienia, co można przypisać anionowi $\text{CrO}_4^{2^-}$. Chrom wykryty w warstwie wierzchniej stali martenzytycznej 1.4034 po elektropolerowaniu z mieszaniem (MIX) pochodzi w 25% od tlenku chromu III Cr₂O₃, w 22% od uwodnionego fosforanu chromu CrPO₄ + n • H₂O i/lub od uwodnionego siarczanu chromu Cr₂(SO₄)₃ + n • H₂O, w 21% od wodorotlenku chromu Cr(OH)₃, w 18% od tlenku chromu CrO₂, w 3% od metalicznego chromu, w 3% od siarczku chromu Cr₂S₃ i w 8% od anionu CrO₄^{2⁻}. Wynika z tego, że podczas elektropolerowania z mieszaniem (MIX) chrom występuje głównie w tlenkach i wodorotlenkach oraz w uwodnionych siarczanach i fosforanach chromu.

4. Podsumowanie

Warstwa wierzchnia stali martenzytycznej 1.4034 po standardowym elektropolerowaniu z mieszaniem (MIX) składa się głównie z żelaza, chromu, siarki i fosforu. Żelazo wykryte w warstwie wierzchniej pochodzi w 17% z metalicznego żelaza oraz w 83% ze związków żelaza.

Chrom wykryty w warstwie wierzchniej pochodzi w 18% od tlenku chromu CrO₂, w 21% od wodorotlenku chromu Cr(OH)₃, w 22% od uwodnionego fosforanu chromu CrPO₄ + n • H₂O i/lub uwodnionego siarczanu chromu Cr₂(SO₄)₃ + n • H₂O, w 3% od metalicznego chromu i w 8% od anionu CrO₄²⁻. Tlen wykryty w warstwie wierzchniej występuje w 12% jako O²⁻, w 36% jako OH⁻, 4% jako PO₄³⁻ + n • H₂O oraz w 48% jako SO₄²⁻ +n • H₂O.

Siarka wykryta w warstwie wierzchniej pochodzi w 25% od uwodnionego siarczanu żelaza $FeSO_4+n \cdot H_2O$, w 65% od uwodnionego siarczanu chromu $Cr_2(SO_4)_3 + n \cdot H_2O$ oraz w 10% dla uwodnionego siarczanu manganu $MnSO_4 + n \cdot H_2O$.

Fosfor wykryty w wierzchniej badanej stali pochodzi w 24% od uwodnionego fosforanu żelaza $FePO_4 + n \cdot H_2O$ i/lub od uwodnionego fosforanu chromu $CrPO_4 + n \cdot H_2O$, a w 76% od uwodnionego fosforanu żelaza $Fe_3(PO_4)$. Authors of the work highly acknowledge Univ.-Prof. Dr Gregor Mori from Montanuniversitaet Leoben, Austria, for providing chemical analysis performed on the studied 4H13 martensitic steel.

5. Literatura

- Metals Handbook, 10th Edition, Vol. 1: Properties and Selection. Irons, Steels and High-Performance Alloys, ASM International, Materials Park, OH 44073, 1990.
- [2] Hryniewicz T.: Physico-chemical and technological Fundamentals of electropolishing steels. Monografie 26, WSI Koszalin, 1989 (161 p.)
- [3] Hryniewicz T.: On the surface treatment of metallic biomaterials. Wyd. Uczelnianie Politechniki Koszalińskiej, Koszalin 2007 (155 str.)
- [4] Hryniewicz T.: Electrochemistry for Surface Engineering. Monograph ed. by T. Hryniewicz, Pol. Koszalinska, Koszalin, 2005 (386p.)
- [5] Rokosz K.: Surface roughness measurements of AISI 316L SS after magnetoelectropolishing in the transpassive region of polarisation characteristics. Pomiary Automatyka Kontrola, 56(4) (2010), 322-325.
- [6] Hryniewicz T., Rokicki R., Rokosz K.: Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field. Surface & Coatings Technology, 202(9) (2008) 1668-1673.
- [7] Hryniewicz T., Rokosz K.: Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface & Coatings Technology, 204(16-17) (2010) 2583-2592.
- [8] Hryniewicz T., Rokosz K.: Polarization Characteristics of Magnetoelectropolishing Stainless Steels, Materials Chemistry and Physics, 2010, 122, 169-174. doi: 10.1016/j.matchemphys.2010.02.055
- [9] Dettner P.: Electrolytic and Chemical Polishing of Metals, Copyright 1987, Ordentlich Publishers Second Printing, Express-SDAR Ltd., Needar Press, Tel Aviv, 1988.
- [10]Kuhn A.T.: Techniques in Electrochemistry, Corrosion, and Metal Finishing – a Handbook, John Wiley & Sons, Chichester-New York-Brisbane, 1987.
- [11] Rokicki R.: Apparatus and method for enhancing electropolishing utilizing magnetic fields. US Patent 7632390, 2009, http:// www.patengenius.com/patent/7632390.html
- [12] Hryniewicz T., Valíček J., Rokicki R., Rokosz K.: Hardness and Nanohardness Measurements of Titanium Biomaterial after Magnetoelectropolishing, Proc. 20th Int. Confer. on Composite Nanoengineering ICCE-20, Beijing, China, July 22-28, 2012 (to appear).
- [13] Hryniewicz T., Rokosz K., Filippi M.: Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing, Materials, 2009, 2(1), 129-145, doi:10.3390/ma2010129 (Basil, Switzerland).
- [14] Hryniewicz T., Rokosz K.: Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface & Coatings Technology, 204(16-17) (2010) 2583-2592.
- [15] Hryniewicz T., Rokosz K.: Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Mat. Chemistry and Physics, 2010, 123, 47-55 doi:10.1016/j.matchemphys.2010.03.060
- [16] Grosvenor A. P., Kobe B. A., McIntyre N. S., Tougaard S., Lennard W. N.: Use of QUASES/XPS measurements to determine the oxide composition and thickness on an iron substrate. Surf. Interface Anal., 36 (2004) 632-639.
- [17] Crist B. V.: Handbook of Monochromatic XPS Spectra. The elements and Native Spectra Oxide. John Wiley & Sons Ltd., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2000.
- [18] Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E.: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer corporation, 1987.

otrzymano / received: 01.03.2012 przyjęto do druku / accepted: 01.05.2012 artykuł recen

artykuł recenzowany / revised paper

Fig. 6. XPS spectra of Cr2p for 4H13 steel after a standard electropolishing with stirring (MIX)

Autorzy pracy składają serdeczne podziękowania Profesorowi Dr Gregorowi Mori z Montanuniversitaet Leoben w Austrii, za wykonanie analizy chemicznej badanej stali 4H13.