PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kapsułka endoskopowa nowej generacji

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
New generation capsular endoscopy
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki prac realizowanych w ramach projektu VECTOR finansowanego w ramach 6 Programu Ramowego Unii Europejskiej w zakresie systemów kompresji i bezprzewodowej transmisji danych i obrazu dedykowanych dla endoskopii kapsułkowej nowej generacji. Opracowany system umożliwia transmisję 24 obrazów na sekundę o rozdzielczości 320x240 przez łącze radiowe o przepustowości 2 Mbit/s. Możliwość długotrwałej pracy kapsułki ma zapewnić układ zasilania bezprzewodowego zdolny dostarczyć do 300 mW mocy.
EN
The paper discusses the outcomes of the European Project VECTOR FP6 concerning image compression and wireless data transmission systems dedicated to a new generation of capsule endoscopy. The overview of the developed system is given in Section 2. The image compressor algorithm, developed within the project, is presented briefly in the first part of Section 3. Next, a new adaptive entropy encoder proposed for it is discussed in detail. The new encoder, in comparison to the previous one, has much lower memory footprint, as it does not use Huffman tables. Simulation results given in Tab. 1 clearly demonstrate that the new encoder, despite its low implementation complexity, outperform the old one. The developed image compressor algorithm was implemented in a single, 65 nm ultra low-power FPGA. It operates with 24 MHz clock and it is able to process a single image frame in 8.2 ms. Its energy consumption amounts to 0.4 mJ per single compressed frame. In Section 4 a wireless transmission system for wireless capsular endoscopy is presented. In this section an improved demodulator for a wireless receiver is also proposed. Section 5 contains the conclusions.
Wydawca
Rocznik
Strony
331--334
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wzory
Twórcy
autor
autor
Bibliografia
  • [1] Iddan G., Meron G., Glukhovsky A., et al.: Wireless capsule endoscopy, Nature, vol. 405, pp. 417-418, 2000.
  • [2] Swain P., Toor A., Volke F., Keller J., Gerber J., Rabinovitz E., Rothstein R. I.: Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos), Gastr. Endoscopy, vol. 71, pp. 1290-1293, 2010.
  • [3] Carta R., Tortora G., Thone J., Lenaerts B., Valdastri P., Menciassi A., Dario P., Puers R.: Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection, Biosensors and Bioelectronics, vol. 25, pp. 845-851, 2009.
  • [4] Dung L. R., Wu Y. Y.: A Wireless Narrowband Imaging Chip for Capsule Endoscope, IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 462-468, 2010.
  • [5] Turcza P., Duplaga M.: Low power FPGA-based image processing core for wireless capsule endoscopy, Sensors and Actuators A: Physical; vol. 172, iss. 2, pp. 552-560, 2011.
  • [6] Puers R., Carta R., Thone J.: Wireless power and data transmission strategies for next-generation capsule endoscopes, J. Micromech. Microeng., vol. 21, no. 5, 2011.
  • [7] Vatteroni M., Covi D., Cavallott C., Clementel L., Valdastri P., Menciassi A., Dario P., Sartori A.: Smart optical CMOS sensor for endoluminal applications, Sensors and Actuators A, vol. 162, pp. 297-303, 2010.
  • [8] Kim J., Rahmat-Samii Y.: Implanted antennas inside a human body: simulations, design and characterizations, IEEE Trans. on Microwave Theory and Tech., vol. 52, pp. 1934-44, 2004.
  • [9] Turcza P., Duplaga M.: Algorytm kompresji obrazów dla bezprzewodowej kapsuły endoskopowej, PAK, vol. 53, nr 9bis str. 165-168, 2007.
  • [10] Malvar H. S., Hallapuro A., Karczewicz M., Kerofsky L.: Low-Complexity Transform and Quantization in H.264/AVC, IEEE Trans. on Circuits and Systems for Video Tech., vol. 7, pp. 598-603, 2003.
  • [11] Berlekamp E. R.: Bit-Serial Reed-Solomon Encoders, IEEE Trans. on Information Theory, IT-28 (6), pp. 869-874, 1982.
  • [12] Rice R. F.: Some practical universal noiseless coding techniques, Tech. Rep. JPL-79-22, Jet Propulsion Laboratory, Pasadena, CA, Mar. 1979.
  • [13] Gallager R., Voorhis D. V.: Optimal source codes for geometrically distributed integer alphabets, IEEE Trans. Inform. Theory, vol. 21, pp. 228-230, 1975.
  • [14] Memon N.: Adaptive coding of DCT coeffcients by GolombRice codes, in Proc. ICIP, vol. 1, Chicago, IL, pp. 516-520, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0119-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.