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Abstract 
 

In last few years, there were discovered many methods aiming at  
enhancing the speedup of parallel programs. In this paper three methods 

are tested according to a speedup parameter enhancement.  These methods 

are:  the tiling,  the slicing, and the tiling inside slicing. In Sections 3, 4, 
and 5 the theoretical basis for chosen transformation are described. 

Algorithms of transformation processes as operations on a polyhedral 

model are presented. The problems of transformation costs are also 
discussed. For experimental studies a UTDSP benchmark was used. From 

each section, one representative sample was chosen. The results were also 

examined against a data locality. This aspect of chosen transformation 
methods was examined as well. 
 
Keywords: OpenMP, tiling, shared memory programming. 
 

Zwiększanie przyspieszenia aplikacji 
równoległych przy użyciu metody podziału  
na bloki, wewnątrz części kodu  wolnych  
od synchronizacji 

 

Streszczenie 

 
W artykule przedstawiono problem doboru metody transformacji pętli 

celem uzyskania możliwie maksymalnego przyspieszenia. Do badań 

wybrano benchmark UTDSP z uniwersytetu w Toronto. Z każdej sekcji 
benchmarku wybrano reprezentanta, który poddany został transformacjom 

tiling, slicing oraz transformacji tiling wewnątrz slicingu. W pierwszym 

rozdziale przedstawiony został wstęp do transformacji pętli. Rozdział 
drugi zawiera informacje teoretyczne na temat modelu polihedronu jako 

formy reprezentacji pętli, na której przeprowadzane są transformacje,  

a wynikowy model jest bazą do generowania kodu źródłowego. Kolejne 
rozdziały przedstawiają opis teoretyczny transformacji tiling oraz slicing. 

Przedstawiono w nich algorytm tworzenia tych transformacji wraz  

z przekształceniami matematycznymi, opisującymi transformacje na 
modelu polihedronu. W końcowej części pracy badano wpływ wybranych 

transformacji na przyspieszenie programów. Wyniki badań przedstawione 

zostały w formie zagregowanych wykresów przyspieszeń poszczególnych 
aplikacji. 
 
Słowa kluczowe: OpenMP, programowanie równoległe. 

 

1. Introduction 
 

Parallel program transformations aim at transforming a loop in 

such a manner that the result program will enhance the speedup. 

The difficulty of programming multi core architectures to 

effectively tap the potential speedup is a well-known challenge. 

The long running programs spend most of their time inside finite 

loops. Effective transformations of such loops can significantly 

increase the speedup of parallel programs.  

In this paper a new approach is developed to increase the 

speedup of parallel programs. It joins two transformations to 

enlarge the locality effect and remove synchronization barriers 

wherever it is possible.  

In the sections of this paper all theoretical and practical 

examples are examined to reveal the strongest and weakest aspects 

of this approach. 

 

2. Polyhedral model 
 

The polyhedral model is an abstract representation of loops, 

whose iteration space is well-known or can be defined during the 

runtime. Each loop statement can be defined as an integer point in 

the n-dimensional space named a polyhedron. In such  

a representation, it is easy to define any affine transformation. It is 

only necessary to obtain representation of a data dependency in 

each statement of a loop. This problem is easily solved by linear 

programming and linear algebra. Moreover, there are no 

difficulties to automatically generate the parallel code of a loop 

after transformation from such a model. As a result, the generated 

code contains reordered statements inside the loop or even extra 

nested loops which enhances data locality. All benefits of the 

polyhedral model are applicable to loop nests in which data 

dependencies and loops bounds can be reflected as affine 

combinations of the outer loop variables and parameters.  

In Fig. 1 the polyhedral model representation of a loop iteration 

space is shown. The loop code is 

 
for (i = 1; i <= 7; i++) { 
 for (i = j - 1; j <= 6; j++) { 
  S(i, j); 

} 
} 

 

where S is a regular loop statement, other than the loop control 

statement, such as break or continue. Each dot represents an 

iteration index and can be combined with a vertex. Dependencies 

can be described as a vector which contains values for the indices 

of the loop surrounding the statement S with all boundaries. 

 

 
 

Fig. 1.  Example of polyhedral model  

Rys. 1.  Przykład reprezentacji pętli w postaci modelu polihedronu 

 

According to the definition, a polyhedron is the set of all 

vectors       such that           . A bounded polyhedron is 

named a polytope. Each instance of statement S is defined by an 

iteration vector    during runtime. Such a vector contains indices of 

the loop surrounding S from outermost to innermost. The 

statement S is also combined with a polytope of dimension n, so 

each point in the polytope is n dimensional vector and the 

polytope can be represented as a set of bounding hyperplanes. It is 

crucial to mention that this is only true when the loop bounds are 

linear combinations of outer loop indices and symbolic constants 

representing the problem size. 
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3. Synchronization of  free slices method 
 

This method generally bases on finding sets of iterations, which 

can be executed in parallel, without using synchronization 

techniques. It can be achieved by the following algorithm 

presented below. 

Let q be a number of vertexes in a data dependencies graph. S 

will be an indicator of a set with all data dependencies relations, 

where relation Rij is a union of relations dependencies between 

instruction si and sj. Now it is possible to notate  

 

                     

 

For each of relation Rij in set S, it is necessary to expand  

a relation by adding one dimension, which will represent the i-th 

and j-th instruction number. For example  

 

                                    

 

Now it is crucial to establish R as a union of all relations in set S. 

  

        

               

 

 

Having the set R, for all instructions si we need to find a set 

UDS(i) which is a difference of union of innermost and outermost  

domains corresponding to instruction si.. 

 

                  

          

 

 

Finally, a set UDS needs to be calculated, as a sum of all sets 

UDS(i), to construct relation R_UCS(i) as it is stated below. 

 

                                          
 

R_UCS(i) is a relation which represents all joined sources of 

synchronization of free slices in the data dependency graph for 

relation R. It is crucial that redundant dependencies are not taken 

into consideration, even if they occur in the data dependencies 

graph. This situation takes place when the instruction depends on 

itself among iterations. Subtraction of UDS(i) and a range of 

R_UCS(i) is a source of synchronization of the free slice in  

a parallel code.   

 

4. The Tiling method 
 

In general, a goal of tiling transformation is to partition the 

iterations space into uniform parts of a given size and shape. 

Generally, there are two types of tiling regarding the non 

distributed memory machines. Rectangular and parallel piped 

tiling methods are described as models of granularity 

transformations. Their purpose is to prepare a portion of data 

which can be stored in the processor cache memory. Latency of 

cache memory, especially latency of first level cache memory, is 

even seventy times lower than that of the random access memory. 

This feature shortens an idle time of processors, which results in 

enhancement of the parallel programs speedup parameter. 

In this paper only the rectangular tiling model is taken into 

consideration, as one of the simplest and with the lowest extra 

costs. Broadly speaking, rectangular tiling is modeled as  

a mapping from Zn to Z2n. It uses squares or rectangles of the same 

shape and size to partition an iteration space. Fig. 2 shows an 

example of rectangular tiling. 

To specify the beginning of a tile, it is crucial to establish one of 

integer points in the tile as the tile origin. Tile origin is placed in 

the left lower corner of the tile. All tile origins define a lattice. In 

Fig. 3 the tile origins are marked as opened circles. 

 

 
 

Fig. 2.  Example of 3x3 tiling  

Rys. 2.  Przykład tilingu o rozmiarach 3x3 

 

 

 
 

Fig. 3.  Tile origins  

Rys. 3.  Punkty reprezentatywne dla metody tiling 

 

To perform tiling transformation we need to know two vectors: 

the tile offset vector    and the tile size vector   . The tile 

transformation R is a bijective. Its representation is shown below. 

 

                     
 

  
    

 
      

  
 

  

   

 

In this representation we need to show all iterations as an 

integer convex polytope, to perform all operations on matrices. It 

is possible to construct loop nests in  other way than an integer 

polytopes, but this solution is very rare and uncommon in use. 

 

5. The tiling inside synchronization of free 
slice method 

 

Ian Foster was one of pioneers who stated the methodology  

of designing parallel algorithms. He named his methodology 

PCAM (Partitiioning-Communication-Agglomeration-Mapping). 

The name originates from four steps of design process which are: 

1. Partitioning – tasks and instructions are portioned into smaller 

parts. In this stage implementation issues are not taken into 

consideration. 

2. Communication – in this stage multi processes communication 

is established. Also, structures and communications algorithms 

are stated. 

3. Agglomeration – tasks and communication issues established in 

the previous steps are evaluated on account of implementation 

costs. If it is necessary, tasks are combined in larger groups. 

4. Mapping – tasks are mapped into processor threads to enhance 

the efficiency manner. 

According to the second and third step of the PCAM model, the 

tiling inside the synchronization of free slice method will enlarge 

positive effects on the program speedup and efficiency. This 

statement is based on the fact that the synchronization of free slice 

algorithm will decrease communication level between processors 

and tiling algorithm will increase reusability of the first and 

second level cache memory. Joining this algorithms in that manner 

should increase the program speedup parameter. However,  

a question may be raised whether transformation costs will be 

covered by the speedup effect. The next section with tests on 

UTDSP (University of Toronto Digital Signal Processing) 

benchmark will answer this question. 
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6. Experimental studies 
 

The experimental studies were carried out on the University of 

Toronto Digital Signal Processing (UTDSP) benchmark. The 

examples were taken from representative groups of algorithms in 

the benchmark. The benchmark was split into two main groups. 

The loops whose name started from  FIR are implementations of  

a finite impulse response filter. The loops whose names started 

from LATNRM are implementations of a normalized lattice filter. 

The loops whose names started from LMSFIR are 

implementations of an adaptive least mean squares filter. For 

purposes of filter transformations, implementation of the matrix 

multiplication algorithm was also added as a loop whose name 

started from MULT. It is important that algorithms and their 

implementations which are part of the UTDSP benchmark are 

used in real signal processing software. 

The experimental tests were carried out on 32 processors 

machine. The machine consisted of four processors with eight 

cores each. The total amount of cache was 12 MB, but each 

processor could share only maximum 4 MB. Experimental 

examples were executed five times in a row. To calculate the 

speedup parameter, the mean of five execution times was taken as 

input parameter. It is worth noting that each execution time was 

not measured in a seconds unit. The base of measurements was  

a tick. The tick is a time in which a processor can execute an 

atomic instruction. To count the processor ticks, gettimeofday 

function was used. This C function can establish the number of 

processor ticks only for instructions which exist in a program 

which is being executed. It is a crucial feature, because during 

program execution the processor also executes instructions from 

the operating system and other programs. To eliminate the impact 

of these programs on measurements, the processor tick count 

method was chosen. Moreover, all examples were compiled using 

a gcc compiler without applying any optimization methods built in 

a gcc compiler. 

All results irrespective of the method chosen were tested against 

scalability. The problem scale, which is placed on x axis, is  

a number of iterations the main loop has made. In the figures in 

which the slicing method occurs, the data are stored in the first 

level cache when the problem scale is between 1200 and 2048. 

When the problem scale is between 2048 and 5120, all data 

occupy L1 and L2 cache. When the problem scale is 5120 and 

above, the data also occupy the random access memory. When the 

tiling method was under tests, a tiling block was chosen to fulfill 

all data in separate memory levels.    

The results of experiments in which only the slicing method 

was used are shown in Fig. 4. 

 

 
 

Fig. 4.  The results for synchronization free slice method 

Rys. 4. Wyniki badań dla metody slicing 

 

In the slicing method only fir_256_64 loop speedup significantly 

grows. The cost of creating and manipulating the threads consumed 

all parallel execution benefits in the rest of the examples. 

The results of experiments using the tiling method, where all 

data were placed in L1 memory are shown in Fig. 5. 

In the example presented above the tiling method with a block 

size 64 KB provides better results than the slicing  method. The 

examples, where more than one statement was inside a parallel 

loop, achieve speedup significantly higher than 1.  

 

 
 

Fig. 5.  The results for tiling method. All data stored in L1cache 

Rys. 5. Wyniki badań dla metody tiling i danych mieszczących się w pamięci L1 

 

The results of experiments using the tiling method, where all 

data were placed in a L2 memory, are presented in Fig. 6. 

 

 
 

Fig. 6.  The results for tiling method. All data stored in L2 cache 

Rys. 6. Wyniki badań dla metody tiling i danych mieszczących się w pamięci L2 

 

In this example a tiling block size was 4096 KB. This size was 

too large to store data in a L1 cache memory, but fits a L2 cache 

memory. According to Figs. 5 and 6, the cache level where data 

were stored is a major aspect of the speedup parameter. When data 

were stored in a L2 cache memory, the speedup parameters were 

approximately three times lower than those in the previous 

example. 

 

 
 

Fig. 7. The results for tiling method. The part of  data stored in RAM 

Rys. 7. Wyniki badań dla metody tiling i danych nie mieszczących się  

w pamięci cache 

 

In Fig. 7 in which most part of data were stored in a random 

access memory, the speedup parameter was the lowest. The 

memory latency was a crucial aspect of effective tiling 

transformation. 

The results of experiments using the tiling inside the slicing  

method, where all data were placed in a L1 memory are presented 

in Fig. 8. 

 

 
 

Fig. 8. The results for tiling inside slicing method. All data stored in RAM 

Rys. 8. Wyniki badań dla metody tiling wewnątrz metody sliping  i danych 

mieszczących się w pamięci L1 
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Using the tiling inside the slicing method has the best effect on 

the speedup parameter. The most scalable example was 

_fir_256_64, where speedup grows with a problem size. The 

speedup values were higher than the number of processors. This 

situation is called hiper-speedup. Unfortunately, a fir_256_64 loop 

speedup parameter was much lower than in cases where only the 

tiling method was applied, which means that the cost of using two 

transformations is higher than the speedup effects, when there are 

few statements inside a parallel loop. 

The results of experiments with the use of the tiling inside the 

slicing  method, where  all data were placed in a L2 memory, are 

shown in Fig. 9. 

 

 
 

Fig. 9.  The results for tiling inside slicing method. All data stored in L2 cache 

Rys. 9. Wyniki badań dla metody tiling wewnątrz slicing i danych mieszczących 

się w pamięci L2 

 

This example shows that a block size in the tiling method has  

a huge effect on the program speedup. When data were placed in  

a second level cache memory, the speedup parameter for loop 

_fir_256_64 was approximately fifteen times lower.  

The results of experiments using the tiling inside the slicing  

method, where  part of the data were placed in a random access 

memory, are shown in Fig. 10. 

 

 
 

Fig. 10. The results for tiling inside slicing method. Partially, data stored  

in random access memory 

Rys. 10. Wyniki badań dla metody tiling wewnątrz slicing i danych nie 

mieszczących się w pamięci cache 

 

Storing data in a random access  memory caused speedup 

parameter downgrade to the lowest value from among all 

experiments. 

The all experimental studies reveal that all methods have  strong 

and weak points. The final effect depends on  loop structures. All 

loop transformation methods provide additional piece of a code, 

sometimes by adding extra loops. In cases in which inside the loop 

there are few statements, a transformation generates so many 

additional statements that the expected speedup is very low. In the 

experimental studies presented in this paper such a situation took 

place for latnrm_8_1_b, fir_32_1 and lmsfir_8_1_a. The 

transformed code contained so many additional statements that its 

execution consumed all the benefits of the transformation and the 

speedup parameter was barely over the zero value. 

However, when there were a lot of statements inside parallel 

loops, the tiling inside the slicing method enlarged the speedup 

parameter to the value nearly twice as big as a number of 

processors. The most crucial aspect of transformation was to 

establish the tile size in such a manner that all data were stored in 

a first level cache memory. When the data exceeded the cache 

memory, the results were not satisfactory. 

7. Summary 
 

The experimental studies reveal that each transformation under 

the test consists of the strongest and weakest points. One of the 

most important aspects of enhancing the speedup parameter is  

utilization of the first level cache memory. Generally, when data 

were stored in  the first level cache memory, irrespective of the 

transformation method, the speedup parameter was significantly 

higher than in examples where data were too large to be stored in 

a L1 cache memory. The higher level memory was used, the lower 

the speedup parameter values were achieved.  

The second aspect of enhancing the speedup parameter is the  

number of statements in a loop under transformation. In general, 

the more statements in the loop which is under transformation, the 

better speedup of a parallel program can be achieved. Evidently, 

more statements can be reflected in more dependencies in a code, 

but almost every type of a dependency can be resolved or honored. 

In the examples under the test, there were three programs whose 

loops under transformation contained only one statement. These 

programs were fir_32_1, latnrm_8_1_t and lmsfir_8_1_a. 

Irrespective of the transformation chosen, the speedup parameter 

was barely over the zero value for these three programs.  

According to the experiments, it is possible to establish some 

clues on choosing the most efficient transformation matching the 

specific problem. The slicing transformation performed the best 

results on the program fir_256_64. Its structure is a loop inside  

a loop with a statement. Such a structure is called imperfectly 

nested loop. It is worth noting that statements inside the innermost 

loop contain all data dependencies types. 

The tiling method gave the best results also for a program 

whose structure is a not perfectly nested loop. The _fir_256_64 

program is nearly the same as the fir_256_64 program. The only 

difference is in statements inside the innermost loop. These 

statements operate on array data type, which can be easily 

separated  into rectangular code tiles. 

The tiling inside the slicing method gave the best results for the 

program which consisted of several nested loops. One of the loops 

was perfectly nested, which means that there was no statement 

inside the parent loop. The _mult_10_10 program consists of 

significantly the highest number of statements inside the loop 

under transformation. According to the experimental studies, the 

tiling inside the slicing method should be chosen when the number 

of statements in the loop under transformation is significantly high 

or statements  are inside a multiple times nested loop.  

The future research will provide the automatic method of 

choosing transformation parameters, depending on a given 

program. Moreover, the OpenMP schedule methods will be taken 

into consideration. 
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