
202  PAK vol. 58, nr 2/2012

Michał GOZDALIK
WEST POMERANIAN UNIVERSITY OF TECHNOLOGY IN SZCZECIN,
Zolnierska Street 52, 71-210 Szczecin, Poland

Use of the tiling method inside synchronization of free slices of code
in OpenMP standard in order to achieve speedup enhancement

M.Sc. Michał GOZDALIK

A PhD student at the West Pomeranian University of

Technology in Szczecin. Currently occupied with

creating a tool allowing generation of parallel code in

C, with the consent of OpenMP standard, which could

take the most possible advantage of multi-processor

machines.

e-mail: mgozdalik@wi.ps.pl

Abstract

In last few years, there were discovered many methods aiming at
enhancing the speedup of parallel programs. In this paper three methods

are tested according to a speedup parameter enhancement. These methods

are: the tiling, the slicing, and the tiling inside slicing. In Sections 3, 4,
and 5 the theoretical basis for chosen transformation are described.

Algorithms of transformation processes as operations on a polyhedral

model are presented. The problems of transformation costs are also
discussed. For experimental studies a UTDSP benchmark was used. From

each section, one representative sample was chosen. The results were also

examined against a data locality. This aspect of chosen transformation
methods was examined as well.

Keywords: OpenMP, tiling, shared memory programming.

Zwiększanie przyspieszenia aplikacji
równoległych przy użyciu metody podziału
na bloki, wewnątrz części kodu wolnych
od synchronizacji

Streszczenie

W artykule przedstawiono problem doboru metody transformacji pętli

celem uzyskania możliwie maksymalnego przyspieszenia. Do badań

wybrano benchmark UTDSP z uniwersytetu w Toronto. Z każdej sekcji
benchmarku wybrano reprezentanta, który poddany został transformacjom

tiling, slicing oraz transformacji tiling wewnątrz slicingu. W pierwszym

rozdziale przedstawiony został wstęp do transformacji pętli. Rozdział
drugi zawiera informacje teoretyczne na temat modelu polihedronu jako

formy reprezentacji pętli, na której przeprowadzane są transformacje,

a wynikowy model jest bazą do generowania kodu źródłowego. Kolejne
rozdziały przedstawiają opis teoretyczny transformacji tiling oraz slicing.

Przedstawiono w nich algorytm tworzenia tych transformacji wraz

z przekształceniami matematycznymi, opisującymi transformacje na
modelu polihedronu. W końcowej części pracy badano wpływ wybranych

transformacji na przyspieszenie programów. Wyniki badań przedstawione

zostały w formie zagregowanych wykresów przyspieszeń poszczególnych
aplikacji.

Słowa kluczowe: OpenMP, programowanie równoległe.

1. Introduction

Parallel program transformations aim at transforming a loop in

such a manner that the result program will enhance the speedup.

The difficulty of programming multi core architectures to

effectively tap the potential speedup is a well-known challenge.

The long running programs spend most of their time inside finite

loops. Effective transformations of such loops can significantly

increase the speedup of parallel programs.

In this paper a new approach is developed to increase the

speedup of parallel programs. It joins two transformations to

enlarge the locality effect and remove synchronization barriers

wherever it is possible.

In the sections of this paper all theoretical and practical

examples are examined to reveal the strongest and weakest aspects

of this approach.

2. Polyhedral model

The polyhedral model is an abstract representation of loops,

whose iteration space is well-known or can be defined during the

runtime. Each loop statement can be defined as an integer point in

the n-dimensional space named a polyhedron. In such

a representation, it is easy to define any affine transformation. It is

only necessary to obtain representation of a data dependency in

each statement of a loop. This problem is easily solved by linear

programming and linear algebra. Moreover, there are no

difficulties to automatically generate the parallel code of a loop

after transformation from such a model. As a result, the generated

code contains reordered statements inside the loop or even extra

nested loops which enhances data locality. All benefits of the

polyhedral model are applicable to loop nests in which data

dependencies and loops bounds can be reflected as affine

combinations of the outer loop variables and parameters.

In Fig. 1 the polyhedral model representation of a loop iteration

space is shown. The loop code is

for (i = 1; i <= 7; i++) {
 for (i = j - 1; j <= 6; j++) {
 S(i, j);

}
}

where S is a regular loop statement, other than the loop control

statement, such as break or continue. Each dot represents an

iteration index and can be combined with a vertex. Dependencies

can be described as a vector which contains values for the indices

of the loop surrounding the statement S with all boundaries.

Fig. 1. Example of polyhedral model

Rys. 1. Przykład reprezentacji pętli w postaci modelu polihedronu

According to the definition, a polyhedron is the set of all

vectors such that . A bounded polyhedron is

named a polytope. Each instance of statement S is defined by an

iteration vector during runtime. Such a vector contains indices of

the loop surrounding S from outermost to innermost. The

statement S is also combined with a polytope of dimension n, so

each point in the polytope is n dimensional vector and the

polytope can be represented as a set of bounding hyperplanes. It is

crucial to mention that this is only true when the loop bounds are

linear combinations of outer loop indices and symbolic constants

representing the problem size.

PAK vol. 58, nr 2/2012  203

3. Synchronization of free slices method

This method generally bases on finding sets of iterations, which

can be executed in parallel, without using synchronization

techniques. It can be achieved by the following algorithm

presented below.

Let q be a number of vertexes in a data dependencies graph. S

will be an indicator of a set with all data dependencies relations,

where relation Rij is a union of relations dependencies between

instruction si and sj. Now it is possible to notate

For each of relation Rij in set S, it is necessary to expand

a relation by adding one dimension, which will represent the i-th

and j-th instruction number. For example

Now it is crucial to establish R as a union of all relations in set S.

Having the set R, for all instructions si we need to find a set

UDS(i) which is a difference of union of innermost and outermost

domains corresponding to instruction si..

Finally, a set UDS needs to be calculated, as a sum of all sets

UDS(i), to construct relation R_UCS(i) as it is stated below.

R_UCS(i) is a relation which represents all joined sources of

synchronization of free slices in the data dependency graph for

relation R. It is crucial that redundant dependencies are not taken

into consideration, even if they occur in the data dependencies

graph. This situation takes place when the instruction depends on

itself among iterations. Subtraction of UDS(i) and a range of

R_UCS(i) is a source of synchronization of the free slice in

a parallel code.

4. The Tiling method

In general, a goal of tiling transformation is to partition the

iterations space into uniform parts of a given size and shape.

Generally, there are two types of tiling regarding the non

distributed memory machines. Rectangular and parallel piped

tiling methods are described as models of granularity

transformations. Their purpose is to prepare a portion of data

which can be stored in the processor cache memory. Latency of

cache memory, especially latency of first level cache memory, is

even seventy times lower than that of the random access memory.

This feature shortens an idle time of processors, which results in

enhancement of the parallel programs speedup parameter.

In this paper only the rectangular tiling model is taken into

consideration, as one of the simplest and with the lowest extra

costs. Broadly speaking, rectangular tiling is modeled as

a mapping from Zn to Z2n. It uses squares or rectangles of the same

shape and size to partition an iteration space. Fig. 2 shows an

example of rectangular tiling.

To specify the beginning of a tile, it is crucial to establish one of

integer points in the tile as the tile origin. Tile origin is placed in

the left lower corner of the tile. All tile origins define a lattice. In

Fig. 3 the tile origins are marked as opened circles.

Fig. 2. Example of 3x3 tiling

Rys. 2. Przykład tilingu o rozmiarach 3x3

Fig. 3. Tile origins

Rys. 3. Punkty reprezentatywne dla metody tiling

To perform tiling transformation we need to know two vectors:

the tile offset vector and the tile size vector . The tile

transformation R is a bijective. Its representation is shown below.

In this representation we need to show all iterations as an

integer convex polytope, to perform all operations on matrices. It

is possible to construct loop nests in other way than an integer

polytopes, but this solution is very rare and uncommon in use.

5. The tiling inside synchronization of free
slice method

Ian Foster was one of pioneers who stated the methodology

of designing parallel algorithms. He named his methodology

PCAM (Partitiioning-Communication-Agglomeration-Mapping).

The name originates from four steps of design process which are:

1. Partitioning – tasks and instructions are portioned into smaller

parts. In this stage implementation issues are not taken into

consideration.

2. Communication – in this stage multi processes communication

is established. Also, structures and communications algorithms

are stated.

3. Agglomeration – tasks and communication issues established in

the previous steps are evaluated on account of implementation

costs. If it is necessary, tasks are combined in larger groups.

4. Mapping – tasks are mapped into processor threads to enhance

the efficiency manner.

According to the second and third step of the PCAM model, the

tiling inside the synchronization of free slice method will enlarge

positive effects on the program speedup and efficiency. This

statement is based on the fact that the synchronization of free slice

algorithm will decrease communication level between processors

and tiling algorithm will increase reusability of the first and

second level cache memory. Joining this algorithms in that manner

should increase the program speedup parameter. However,

a question may be raised whether transformation costs will be

covered by the speedup effect. The next section with tests on

UTDSP (University of Toronto Digital Signal Processing)

benchmark will answer this question.

204  PAK vol. 58, nr 2/2012

6. Experimental studies

The experimental studies were carried out on the University of

Toronto Digital Signal Processing (UTDSP) benchmark. The

examples were taken from representative groups of algorithms in

the benchmark. The benchmark was split into two main groups.

The loops whose name started from FIR are implementations of

a finite impulse response filter. The loops whose names started

from LATNRM are implementations of a normalized lattice filter.

The loops whose names started from LMSFIR are

implementations of an adaptive least mean squares filter. For

purposes of filter transformations, implementation of the matrix

multiplication algorithm was also added as a loop whose name

started from MULT. It is important that algorithms and their

implementations which are part of the UTDSP benchmark are

used in real signal processing software.

The experimental tests were carried out on 32 processors

machine. The machine consisted of four processors with eight

cores each. The total amount of cache was 12 MB, but each

processor could share only maximum 4 MB. Experimental

examples were executed five times in a row. To calculate the

speedup parameter, the mean of five execution times was taken as

input parameter. It is worth noting that each execution time was

not measured in a seconds unit. The base of measurements was

a tick. The tick is a time in which a processor can execute an

atomic instruction. To count the processor ticks, gettimeofday

function was used. This C function can establish the number of

processor ticks only for instructions which exist in a program

which is being executed. It is a crucial feature, because during

program execution the processor also executes instructions from

the operating system and other programs. To eliminate the impact

of these programs on measurements, the processor tick count

method was chosen. Moreover, all examples were compiled using

a gcc compiler without applying any optimization methods built in

a gcc compiler.

All results irrespective of the method chosen were tested against

scalability. The problem scale, which is placed on x axis, is

a number of iterations the main loop has made. In the figures in

which the slicing method occurs, the data are stored in the first

level cache when the problem scale is between 1200 and 2048.

When the problem scale is between 2048 and 5120, all data

occupy L1 and L2 cache. When the problem scale is 5120 and

above, the data also occupy the random access memory. When the

tiling method was under tests, a tiling block was chosen to fulfill

all data in separate memory levels.

The results of experiments in which only the slicing method

was used are shown in Fig. 4.

Fig. 4. The results for synchronization free slice method

Rys. 4. Wyniki badań dla metody slicing

In the slicing method only fir_256_64 loop speedup significantly

grows. The cost of creating and manipulating the threads consumed

all parallel execution benefits in the rest of the examples.

The results of experiments using the tiling method, where all

data were placed in L1 memory are shown in Fig. 5.

In the example presented above the tiling method with a block

size 64 KB provides better results than the slicing method. The

examples, where more than one statement was inside a parallel

loop, achieve speedup significantly higher than 1.

Fig. 5. The results for tiling method. All data stored in L1cache

Rys. 5. Wyniki badań dla metody tiling i danych mieszczących się w pamięci L1

The results of experiments using the tiling method, where all

data were placed in a L2 memory, are presented in Fig. 6.

Fig. 6. The results for tiling method. All data stored in L2 cache

Rys. 6. Wyniki badań dla metody tiling i danych mieszczących się w pamięci L2

In this example a tiling block size was 4096 KB. This size was

too large to store data in a L1 cache memory, but fits a L2 cache

memory. According to Figs. 5 and 6, the cache level where data

were stored is a major aspect of the speedup parameter. When data

were stored in a L2 cache memory, the speedup parameters were

approximately three times lower than those in the previous

example.

Fig. 7. The results for tiling method. The part of data stored in RAM

Rys. 7. Wyniki badań dla metody tiling i danych nie mieszczących się

w pamięci cache

In Fig. 7 in which most part of data were stored in a random

access memory, the speedup parameter was the lowest. The

memory latency was a crucial aspect of effective tiling

transformation.

The results of experiments using the tiling inside the slicing

method, where all data were placed in a L1 memory are presented

in Fig. 8.

Fig. 8. The results for tiling inside slicing method. All data stored in RAM

Rys. 8. Wyniki badań dla metody tiling wewnątrz metody sliping i danych

mieszczących się w pamięci L1

PAK vol. 58, nr 2/2012  205

Using the tiling inside the slicing method has the best effect on

the speedup parameter. The most scalable example was

_fir_256_64, where speedup grows with a problem size. The

speedup values were higher than the number of processors. This

situation is called hiper-speedup. Unfortunately, a fir_256_64 loop

speedup parameter was much lower than in cases where only the

tiling method was applied, which means that the cost of using two

transformations is higher than the speedup effects, when there are

few statements inside a parallel loop.

The results of experiments with the use of the tiling inside the

slicing method, where all data were placed in a L2 memory, are

shown in Fig. 9.

Fig. 9. The results for tiling inside slicing method. All data stored in L2 cache

Rys. 9. Wyniki badań dla metody tiling wewnątrz slicing i danych mieszczących

się w pamięci L2

This example shows that a block size in the tiling method has

a huge effect on the program speedup. When data were placed in

a second level cache memory, the speedup parameter for loop

_fir_256_64 was approximately fifteen times lower.

The results of experiments using the tiling inside the slicing

method, where part of the data were placed in a random access

memory, are shown in Fig. 10.

Fig. 10. The results for tiling inside slicing method. Partially, data stored

in random access memory

Rys. 10. Wyniki badań dla metody tiling wewnątrz slicing i danych nie

mieszczących się w pamięci cache

Storing data in a random access memory caused speedup

parameter downgrade to the lowest value from among all

experiments.

The all experimental studies reveal that all methods have strong

and weak points. The final effect depends on loop structures. All

loop transformation methods provide additional piece of a code,

sometimes by adding extra loops. In cases in which inside the loop

there are few statements, a transformation generates so many

additional statements that the expected speedup is very low. In the

experimental studies presented in this paper such a situation took

place for latnrm_8_1_b, fir_32_1 and lmsfir_8_1_a. The

transformed code contained so many additional statements that its

execution consumed all the benefits of the transformation and the

speedup parameter was barely over the zero value.

However, when there were a lot of statements inside parallel

loops, the tiling inside the slicing method enlarged the speedup

parameter to the value nearly twice as big as a number of

processors. The most crucial aspect of transformation was to

establish the tile size in such a manner that all data were stored in

a first level cache memory. When the data exceeded the cache

memory, the results were not satisfactory.

7. Summary

The experimental studies reveal that each transformation under

the test consists of the strongest and weakest points. One of the

most important aspects of enhancing the speedup parameter is

utilization of the first level cache memory. Generally, when data

were stored in the first level cache memory, irrespective of the

transformation method, the speedup parameter was significantly

higher than in examples where data were too large to be stored in

a L1 cache memory. The higher level memory was used, the lower

the speedup parameter values were achieved.

The second aspect of enhancing the speedup parameter is the

number of statements in a loop under transformation. In general,

the more statements in the loop which is under transformation, the

better speedup of a parallel program can be achieved. Evidently,

more statements can be reflected in more dependencies in a code,

but almost every type of a dependency can be resolved or honored.

In the examples under the test, there were three programs whose

loops under transformation contained only one statement. These

programs were fir_32_1, latnrm_8_1_t and lmsfir_8_1_a.

Irrespective of the transformation chosen, the speedup parameter

was barely over the zero value for these three programs.

According to the experiments, it is possible to establish some

clues on choosing the most efficient transformation matching the

specific problem. The slicing transformation performed the best

results on the program fir_256_64. Its structure is a loop inside

a loop with a statement. Such a structure is called imperfectly

nested loop. It is worth noting that statements inside the innermost

loop contain all data dependencies types.

The tiling method gave the best results also for a program

whose structure is a not perfectly nested loop. The _fir_256_64

program is nearly the same as the fir_256_64 program. The only

difference is in statements inside the innermost loop. These

statements operate on array data type, which can be easily

separated into rectangular code tiles.

The tiling inside the slicing method gave the best results for the

program which consisted of several nested loops. One of the loops

was perfectly nested, which means that there was no statement

inside the parent loop. The _mult_10_10 program consists of

significantly the highest number of statements inside the loop

under transformation. According to the experimental studies, the

tiling inside the slicing method should be chosen when the number

of statements in the loop under transformation is significantly high

or statements are inside a multiple times nested loop.

The future research will provide the automatic method of

choosing transformation parameters, depending on a given

program. Moreover, the OpenMP schedule methods will be taken

into consideration.

8. References

[1] Ruud Van Der Pas Barbara Chapman, Gabriele Jost. Using OpenMP .

The MIT Press, 2007.

[2] Uday Bondhugula, Muthu Baskaran. Affine transformations for

communication minimal parallelization and locality optimization of

arbitrary nested loop sequences. OSU-CISRC-5/07-TR43.

[3] Intel white pages. http://www.intel.com. Intel website.

[4] Jingling Xue, Loop tiling for parallelism. Kluwer Academic

Publishers.

[5] Mostafa Abd-El-Barr Hesham El-Rewini. Advanced computer

architecture and parallel processing. Wiley Interscience, 2005.

[6] Addison Wesley. An introduction to parallel computing. Addison

Wesley, 2003.

otrzymano / received: 06.12.2011

przyjęto do druku / accepted: 03.01.2012 artykuł recenzowany / revised paper

