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Abstract

This article examines a lump mass model of a perfectly symmetric bladed disk assembly of five

sectors with nonlinearities in blades. Nonlinear modal analysis and the existence of localized Non-

linear Normal Modes (NNMs) has been shown in previous work [1]. In this article, we demonstrate

numerically that it is possible to excite the localized NNMs using travelling waves excitation. Prac-

tically this is very important, in case of operation of the assembly in nonlinear regime,  then  the

localized modes must be taken into account, for the proper life-assessment of the assembly. Also

this work will be continued with the determination of Nonlinear ‘Cambell’s’ diagram of helicop-

ter blades assemblies, with final aim to control their nonlinear dynamics.

INtroductIoN

In the literature, of linear bladed disk assemblies, localized modes (whereas the energy is
spatially confined) is only characteristic of mistuned assemblies and not of perfectly cyclic [2].
Localization of energy in perfectly symmetric cyclic structures, due to nonlinearities, can be
found in nonlinear systems [1,9,14]. taking into account nonlinearities, we must use the the-
ory of NNms in order to determine the dynamics. Going back to 60’s, a pioneer in this field was
rosenberg who defined Normal modes (similar and nonsimilar), the vibrations in unison of ad-

missible systems [6]. expansion of this work in forced vibrations has been done by manevitch
[7], mikhlin [8] and Szemplinska-Stupnicka [9], and in 1990’s analytically by caughey and
Vakakis [10], Shaw and Pierre [11], Vakakis et al [12], also by Warminski [13-15], and numer-
ically by kerschen et al. [16], Georgiades [17], Peeters [18,19], and many others. Since rosen-
berg, the definition of Nonlinear Normal modes is extended nowadays to the periodic motions

of a dynamical system which include the cases of internal resonances with subharmonic NNms
and travelling waves NNms [16]. We study a model by taking into account only five blades which
correspond to helicopter bladed disk assembly. In design of a helicopter bladed disc with geo-
metric nonlinearities, localized NNms must be taken into account [5].
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SyStem deFINItIoN-excItatIoN ForceS

In case of inextensional beam, the equation of motion in bending vibration, excluding linear
and nonlinear inertia terms (which in many cases are very small – they are higher order terms
than the order of equation of motion), the nonlinear part is of cubic geometric nonlinearity, for
both cases of isotropic and also for symmetric composite beam with orthotropic lamina [20,21].
We construct our cyclic linear viscous model considering cubic nonlinearities in blades. the
system is dissipative and it is presented in Figure 1. modal analysis of the corresponding con-
servative system (without dissipation) has been examined in paper [1] which showed the ex-
istence of localized Nonlinear Normal modes. the equations of motion of this model are given
by,

(blades)

(disks) (1)

whereas, x, are the displacements, velocities and accelerations of blades and x, are the
displacements, velocities and accelerations of disks respectively. Fi(t) is the excitation force
which is applied only in blades and also i=1,…,5 and x6=x1, x0=x5, , (the cyclic
conditions).

Figure 1. one sector of the model a) continuous model, b) discrete model.

the excitation force is applied only in blades of this system and it is standard travelling waves
excitation given by [4],

(2)

With i=1,…5, the positive sign defines forward travelling waves and the negative sign back-
wards travelling waves, and φ is the phase difference or spatial frequency (rad/sector) between
adjacent blades and is given by,

(3)

whereas eo is the selected engine order excitation. typical case of travelling waves excitation
is depicted in Figure 2.
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the values of the parameters of the system are given by, 

(4)

the natural frequencies of the corresponding conservative system (without damping) are
presented in table 1. there are 8 modes in pairs and 2 single modes. the first mode with 0 fre-
quency is the rigid body mode whereas the addition of grounded viscous dampers in disks af-
fect to extremely high critical damping ratio in this mode, without influence in our studies. also
in table 1 are indicated the characteristics of the modes in terms of nodal circles and nodal di-
ameters. In the case of 0 (1) Nodal circles of normal modes means that at each sector the blade
mass is in phase with disk mass (the blade mass is out of phase with disk mass). the case of 0,
1 or 2 nodal diameters corresponds to circumferential examination of amplitudes of mode
shapes and we count how many circumferential points of adjacent sectors have opposite sign
in amplitudes e.g. for 1 nodal diameter 2 points etc. [1]. this is very important because it is in-
dicating which eo of travelling waves excitation should be used for the excitation of the corre-
sponding mode.

Figure 2. travelling waves excitation with ω=4.76 rad/sec

table 1

M m K k d d
nl s m

=1, = 0.3, =1, =1, k = 0.1, = 0.015, = 0.015

30 FotIoS GeorGIadeS, Jerzy WarmIńSkI



excItatIoN oF NNmS

In case of non-autonomous systems we determine the steady states (which are periodic mo-
tions of k – periods which corresponds to j – periods of the excitation frequency e.g. for k=j=1,
there is 1 – 1 steady states on the system) and we examine the resonance points (k – j, NNms)
in nonlinear Frequency response Functions (FrFs- maximum amplitudes of displacements or
Frequency-mechanical energy plots) which, in relative small damping, are very close to curves
of maximum amplitudes of displacements with variation of frequency or frequency-energy plot
curves of autonomous systems [6,12,16].

In order to determine numerically the resonance point of the system (NNm) with variation
of frequency we use pseudo-arclength and also sequential continuation technique with codes
written in matlab which initially has been developed at university of Liege [15, 16] and has
been modified significantly at university of Lublin to meet the requirements of our research.

the travelling waves excitation is applied only in blades. this one used in this article is of
eo=2 with amplitude a=0.66 and it is depicted in Figure 2, in case of ω=4.76 rad/sec. By ap-
plication of this excitation, with variation of frequency at periodic motions, we can find the cor-
responding Nonlinear FrF which is the variation of maximum amplitudes of Blades and disks
at each excitation frequency.

In Figures 3 (a, b), are depicted the Nonlinear Frequency response Function for blade max-
imum responses (disks maximum responses). there are 2 resonance points in these Nonlinear
FrF’s the first one at ω=1.582 rad/sec, and the second at ω=4.5 rad/sec. Since it is used eo=2,
it is expected to be the “evolution” with energy of linear modes (4,5) and (9,10), respectively.
Indeed, this is true, which confirms detailed examination at resonance points, as depicted in Fig-
ures 4a,b and 5a,b. more precisely, Figure 4a(b) depicts the displacements of blades (disks) for
each sector, in time, for the resonance point at ω=1.582 rad/sec, whereas one can observe that
the motions are no “synchronous”. they are in travelling waves form which corresponds to 1:1
internal resonance as shown in [17]. It can be noted that in Figures 4a,b there are 4 inclined
‘lines’ which follows the zero crossings or the maximum absolute amplitudes of the displace-
ments. they correspond to 4 circumferential nodes in pairs of “anti-diametrical” positions and
therefore in 2 nodal diameters. comparison of Figures 4a with 4b, by means of the displace-
ments of blades, with disks for the same sector, shows that they are in phase therefore corre-
spond to 0 zero nodal circle modes. therefore this mode corresponds to (4,5) linear modes. In
Figure 5a(b) are depicted the displacements of blades (disks), for each sector in time, for res-
onance point at ω=4.5 rad/sec. Similarly we can see that they correspond to 2 nodal diameters
and also 1 nodal circle, therefore to (9,10) linear modes.

Figures 3. Nonlinear FrF’s of a) blades, b) disks
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Figures 4. responses at resonance w=1.582 rad/sec, of a) blades b)disks.

Figures 5. responses at resonance ω=4.5 rad/sec, of a) blades b)disks.

Figures 6. Nonlinear FrF’s of a) blades, b) disks

We continued the examination of Nonlinear FrF’s and we found also another one Nonlinear
FrF curve. In Figures 6a,b we may observe the Nonlinear FrF’s for a curve which corresponds
to a bifurcated curve of the autonomous system. this Nonlinear FrF is rather significant for
the assembly since it is related with a localized Nonlinear Normal mode only in one sector
(blade-“3”, disk-“3”, the system is cyclic so there is no circumferential origin which means no
sense in sector 3). In Figure 7 a,b are depicted the displacement of blades (disks) in time, for
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this excited mode which corresponds to resonance point with ω=4.76 rad/sec. It is clear that
it represents 1-nodal circle, since the blades are in opposite phase with disks. the nodal diam-
eters are no longer clear that are still 2 due to the almost zero amplitudes of all the other sec-
tors apart the 3rd one. the excitation of the assembly of this NNm has been done with the
travelling waves applied only in blades (Figure 7).

Figures 7. responses at resonance of a) blades, b) disks

coNcLuSIoNS aNd Future Work

We showed numerically, that using travelling waves excitation we can excite a localized Non-
linear Normal mode. this phenomenon may play essential role in design of bladed disk as-
semblies. We will continue our research taking into account rotation of the assembly
(centrifugal and coriolis forces) and construct the Nonlinear ‘campbell’ diagram using Non-
linear Normal modes techniques. the final aim is to control the dynamics of helicopter blades
with active elements e.g. avoiding the excitation of localized Nonlinear Normal modes.
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LOkALizACjA NiELiNiOWYCh POSTACi dRgAń dYSkRETNEgO
mOdELU UkłAdU WiRNikOWEgO

Streszczenie

W pracy przedstawiono analizę drgań dyskretnego, idealnie symetrycznego, modelu struktury

składającej się z dysku wraz z dołączonymi pięcioma nieliniowymi sektorami, reprezentującymi

nieliniowe łopaty wirnika. Szczegółową nieliniową analizę modalną, jak również możliwość

lokalizacji nieliniowych postaci drgań (NNM) zawarto w artykule [1]. W bieżącej pracy przed-

stawiono numeryczną analizę nieliniowych postaci drgań wzbudzonych za pomocą poruszającej

się fali. W przypadku gdy badany układ jest nieliniowy możliwe jest wystąpienie tzw. lokalizacji

postaci drgań. Zjawisko to ma istotne znaczenie praktyczne. Powinno być wzięte pod uwagę w celu

prawidłowej eksploatacji struktury wielołopatowej oraz zwiększenia jej czasu “życia”. Przed-

stawione badania będą wykorzystane do wyznaczenia diagramu Cambell’a dla wirnika śmigłowca

i w konsekwencji posłużą do opracowania strategii sterowania jego nieliniową dynamiką.
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