PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Weryfikacja modelu dynamicznego mikro-samolotu z wibrującymi generatorami wirów do sterowania przepływem

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Dynamics model verification of micro aerial vehicle with vortex piezo-generators
Języki publikacji
PL
Abstrakty
PL
W pracy zaprezentowano weryfikację modelu matematycznego dynamiki mikro-samolotu w układzie delta z zabudowanymi generatorami wirów krawędziowych, które zostały wykorzystane jako aktywnie sterowane człony wykonawcze do sterowania przepływem. Przeprowadzono obliczenia charakterystyk aerodynamicznych modelu mikro-samolotu. Badania zweryfikowano w tunelu aerodynamicznym. Zaprezentowano charakterystyki aerodynamiczne mikro-samolotu z aktywnymi generatorami wirów krawędziowych wykonane w tunelu aerodynamicznym. Badania zostały przeprowadzone dla różnych częstotliwości i konfiguracji pracy piezo-generatorów. Przeprowadzono badania członów wykonawczych do generowania wirów, wyznaczono charakterystyki dynamiczne pracy piezo-generatorów dla różnych częstotliwości zadanych. Przeprowadzono analizę zużycia energii przez wibracyjne systemy sterowania mikro-samolotem.
EN
In the paper, the dynamics model of the micro aerial vehicle with delta wings configuration and vortex piezo-generators was verified. The vortex piezo-generators were assembled symmetrically in the vehicle wings. The flexible moving small plates deformations driven by controlled piezo-stacks and their influence on the air flow in the delta boundary layers are presented. The aerodynamics characteristics of the aircraft with the vortex piezo-generators were calculated and verified in the wind tunnel. The influence of the piezo-generators due to varied operation frequencies on the lift force in the time domain is presented. Also, the battery energy consumption of the piezo-generators were carried out due to frequency and time of the operation.
Rocznik
Strony
103--125
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wzory
Twórcy
  • Politechnika Białostocka
Bibliografia
  • [1] Maskel E. C., Flow separation in three dimensions, RAE Report Aero 2565, 1955.
  • [2] Chang P. K., Control of separation, New York: McGraw-Hill, 1976.
  • [3] Telionis D. P., Review - Unsteady boundary layers, separated and attached, ASME J. Fluids Eng., 101, pp. 29-43, 1979.
  • [4] Prandtl L., Über Fltissigkeitsbeweung bei sehr kleiner-Reibung, Proceedings of Third International Mathematical Congress, Heidelberg pp. 484-491, 1904.
  • [5] Lachmann G. V., Boundary layer and fow control. Its principles and application, Vol. 1. New York: Pergamon Press, 1961.
  • [6] Lachmann G. V., Boundary layer and fow control. Its principles and application, Vol. 2. New York: Pergamon Press, 1961.
  • [7] Gad-el-Hak M., Bushnell D. M., Separation control: review. J. Fluid Engng, 113, pp. 5-30, 1991.
  • [8] Gad-el-Hak M., Flow control: Passive, active and reactive flow management Cambridge University Press, 2000.
  • [9] Kaiden T., Nakamura Y., Numerical Analysis of Aerodynamic Control by Micro-flap around Delta Wing, 19th AIAA Applied Aerodynamics Conference, Anaheim, California, 01-2441, 2001.
  • [10] Kaushari A. ,, Boundary Layer Control Using Smart Materials, Research project is funded by ADA under DISMAS scheme, 2005.
  • [11] Polhamus, E. C., Predictions of Vortex-Lift Characteristics by a Leading-Edge-Suction Analogy, Journal of Aircraft, Vol. 8, No. 4, 193-199., Vol. 70, No. 5, 420-456, 1971.
  • [12] Suleman A., Costa A.P., Adaptive control of an aeroelastic flight vehicle using piezoelectric actuators, Computer and Strucutres, Vol. 82, pp. 1303-1314, 2004.
  • [13] Pendleton E., Griffin K. E., Kehoe M. W, Perry B. A., Fight research program for active aeroelastic wing technology, In: Conference Proceedings AIAA-96-1574-CP, USA, 1996.
  • [14] Crawley E. F., Intelligent structures for aerospace; A technology overview and assessment, AIAA Journal, Vol. 32, No. 8, pp. 1689-1699, 1994.
  • [15] Jardine P., Flanigan J., Martin, Ch., Smart wing shape memory alloy actuator design and performance, Smart structures and materials conference, SPIE, Vol. 3044, pp. 48-55, 1997.
  • [16] Kikuta M. T., Mechanical properties of candidate materials for morphing wings, Master thesis, Virginia Polytechnic Institute and State University, 2003.
  • [17] Garcia H. M., Control of micro air vehicles using wing morphing, Master thesis, University of Florida, 2003.
  • [18] Wallis R. A, Stuart C. M., On the control of shock-induced boundary layer separation with discrete air jets, ARC CP, No. 595, 1962.
  • [19] Gursul, I., Wang, Z., Vardaki, E., Review of Flow Control Mechanisms of Leading-edge Vortices. Progress in Aerospace Sciences, 43 (7-8), pp. 246-270, 2007.
  • [20] Manes D., Gursul I., Effect of a Jet on Vortex Merging, AIAA-2007-4364, 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, June 25-28, 2007.
  • [21] Wang Z., Gursul I., Effects of Jet/Vortex Interaction on Delta Wing Aerodynamics, 1st International Conference on Innovation and Integration in Aerospace Sciences, 4-5 August 2005, Quenn’s University Belfast, Northern Ireland, UK.
  • [22] Mitchell, A. M., Barberis D., Molton P., Delery J., Control of Leading-Edge Vortex Breakdown by Trailing-Edge Injection, Journal of Aircraft, Vol. 39, No. 2, pp. 221-226, 2002.
  • [23] Shyy, W, IFju, P., Viieru, D., Membrane wing-based micro air vehicles. Applied Mechanics Reviews, Vol. 58, pp. 283-301, 2005.
  • [24] Gordnier R. E., High fidelity computational simulation of a membrane wing airfoil, Journal of Fluids and Structures, Vol. 25, pp. 897-917, 2009.
  • [25] Lian Y., Shyy W, Viieru D., Zhang B., Membrane wing aerodynamic for micro air vehicle, Progress in Aerospace Sciences, Vol. 39, pp. 425-465, 2003.
  • [26] Collins F. G., Zelenevitz J,. Infuence of sound upon separated flow over wings, AIAA J. 13(3):408-10, 1975.
  • [27] Zaman K. B. M. Q., Bar-Sever A., Mangalam S. M., Efect of acoustic excitation on the flow over a low-Re airfoil, J. Fluid Mech., 182:127-48, 1987.
  • [28] Ahuja K. K., Whipkey R. R., Jones G. S.. Control of turbulent boundary layer flow by sound, AIAA Paper 83-0726, 1983.
  • [29] Sathaye A., Lal A., An Acoustic Vortex Generator For Micro-fluid Particle Entrapment, IEEE Ultrasonics Symposium, Vol. 1, pp. 641-644, 2001.
  • [30] Johnston J. P., Nishi M., Vortex Generator Jets - A Means for Flow Separation Control, AIAA Journal, Vol. 28, No. 6, pp. 989-994, 1990.
  • [31] Gwo-Bin L. et al, Robust vortex control of a delta wing using distributed MEMS actuators, National Cheng Kung University, FAMU-FSU College of Engineering, California Institute of Technology, University of Illinois at Urbana-Champaign, University of California, 2008.
  • [32] Sohn M. H., Chung H. S., Control of double-delta-wing vortex by micro leading-edge flap, 25th AIAA Applied Aerodynamics Conference, Miami, 2007.
  • [33] Borgeson D. M., Boundary layer control using micro-electromechanical systems (MEMS), Thesis, AF Institute of Technology, Ohio, 2002.
  • [34] Lee G. B., Chiang S., Tai Y. C., Tsao T., Ho C. M., Robust vortex control of a delta wing using distributed MEMS actuators, Journal of Aircraft, Vol. 37, No. 4, pp. 697-706, 2000.
  • [35] Huang A., et al, Applications of MEMS Devices to Delta Wing Aircraft: From Concept Development to Transonic Flight Test, AIAA, Reno, Nevada, 2001.
  • [36] Huang A., Ho C. M., Jiang F., Tai Y. C., MEMS Transducers for Aerodynamics-A Paradigm Shift AIAA 00-0249, Reno, Nevada, 2001.
  • [37] Greenblatt D., Wygnanski I. J., The Control of Flow Separation by Periodic Excitation, Progress in Aerospace Sciences, Vol. 36, pp. 487-545, 2000.
  • [38] McCormick B. W., Aerodynamics, aeronautics and flight mechanics, Wiley, New York, 1979.
  • [39] Greenblatt D., Wygnanski I. J., Use of periodic excitation to enhance airflow performance at low Reynolds numbers, J. Aircraft 38(1), pp. 190-192, 2001.
  • [40] http://www.topmodelcz.cz
  • [41] NASA, Vortex-lattice utilization. NASA SP-405, NASA-Langley, Washington, 1976.
  • [42] Prandtl L., Applications of modern hydrodynamics to aeronautics, NACA-TR-116, NASA, 1923.
  • [43] Falkner V. M., The Accuracy of Calculations Based on Vortex Lattice Theory, Rep. No. 9621, British A. R. C., 1946.
  • [44] Melin T., A Vortex Lattice MATLAB implementation for linear aerodynamic wing applications, Master thesis, KTH, Department of Aeronautics, December, 2000.
  • [45] Tornado 1.0, User Guide, Reference manual, Relase 2.3, 2001.
  • [46] Schubauer G. B., Skramstad H. K., Laminar boundary layer oscillations and transition on a flat plate. NACA Rep. 909, 1948.
  • [47] Oster D., Wygnanski I. J., Dziomba B., Fiedler H., The effect of initial conditions on the two-dimensional, turbulent mixing layer. In: Fiedler H, editor. Structure and mechanics of turbulence. Lecture Notes in Physics, Vol. 75. Berlin: Springer, pp. 48-64, 1978.
  • [48] Ho C. M., Huang L. S., Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119:119-42, 1982.
  • [49] Browand F. K, Ho C. M., The mixing layer: an example of quasi two-dimensional turbulence. Journal de Mecanique, 1983.
  • [50] Wygnanski I. J., Boundary layer and flow control by periodic addition of momentum, in:4th AIAA Shear Flow Control Conference, Snowmass Vilage, CO, also as AIAA-97-2117, 1997.
  • [51] Nishri B., Wygnanski I. J., Effects of periodic excitation on turbulent separation from a flap, AIAA J. 36 (4), pp. 547-556, 1498.
  • [52] Seifert A., Eliahu S., Greenblatt D., Wygnanski I. J., Use of piezoelectric actuators for airfoil separation control, AIAA Journal, Vol. 36, No. 8, pp. 1535-1537, 1998.
  • [53] Suleman A., Costa A. P., Adaptive control of an aeroelastic flight vehicle using piezoelectric actuators, Computers and Structures, Vol. 82, pp. 1303-1314, 2004.
  • [54] Poisson-Quinton Ph. Recherches theoriques et experimentales sur le control de couche limits, 7th Congress of Applied Mechanics, London, September 1948.
  • [55] Seifert A., Greenblatt D., Wygnanski I. J., Active separation control: an overview of Reynolds and Mach numbers effects, Aerospace Science and Technology, Vol. 8, pp. 569-582, 2004.
  • [56] Ostapkowicz P., Projekt i dokumentacja techniczna mikro-samolotu z wibracyjnym sterowaniem wirami krawędziowymi, Raport projektu rozwojowego nr 0059/R/T00/2008/06, Białystok, 2010.
  • [57] Mystkowski A., Gosiewski Z., Boundary layer control in delta micro air vehicle with vortex piezo-generators, VI Konferencja Awioniki Rzesz6w-Bezmiechowa, 16-18 września 2010.
  • [58] Mystkowski A, Analiza aerodynamild ukladu sterowania mikro-samolotem typu delta z wbudowanymi piezo-generatorami wirów krawędziowych, Acta Mechanica et Automatica, Vol. 4, No. 3, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0112-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.