PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania układu sterowania odpornego bezzałogowym aparatem latającym

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Robust control of unmanned aerial vehicle - simulation investigations
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono studium projektowania i wyniki badań symulacyjnych układu optymalnego sterowania odpornego (ang. Optimal Robust Control) opartego na metodzie H-infinity i Μ-Synthesis dla mikro-samolotu zbudowanego w układzie delta z zaimplementowaną elektroniką autopilota. Wyznaczono model nominalny obiektu (zlinearyzowany w otoczeniu przyjętego punktu pracy). Oszacowano zakresy zmian parametrów niestacjonarnych obiektu, na podstawie których został zbudowany model niepewności multiplikatywnej obiektu sterowania. Uwzględniając nieliniową dynamikę układów wykonawczych mikro-samolotu, model nominalny i model niepewności zaprojektowano funkcje wagowe i filtry włączone wtory pomiarowe. Na podstawie tych działań zostały obliczone regulatory H-infinity i Μ-Synthesis uwzględniające sterowanie ruchem wzdłużnym i bocznym mikro-samolotu z stabilizacją kursu i wysokości lotu. Przeprowadzone obliczenia algorytmów sterowania i zweryfikowane zwynikami symulacji tzw. hardware-in-the-loop, potwierdziły efektywność zastosowanych praw sterowania.
EN
This paper discusses a nonlinear robust control design procedure to unmanned aerial vehicle that combines the singular value of the Μ-Synthesis and H-infinity techniques, which overcomes structured uncertainty of the control plant and is valid over the entire flight envelope. For the designed control system, the simulations and hardware-in-the-loop tests were performed. For the micro-aircraft with delta wings configuration the nominal model (linearized in the desired operation point) was calculated. Next, the uncertainty model was evaluated. The uncertainty model consists with multiplicative plug-in dynamics disturbances and parametric uncertainty. The uncertainty is conducted with the aircraft aerodynamics characteristics and parameters. These uncertainties are bounded in size based on wind tunnel experiments, flight test and analytical calculations. The weighting functions are used to capture the limits on the aileron, elevator and thrust actuators deflection magnitude and rate. Finally, the augmented model of the micro air vehicle was carried out, and H-infinity/Μ-Synthesis controllers were calculated. The robust control laws were successfully verified during the hardware-in-the-loop simulations.
Rocznik
Strony
82--102
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wzory
Twórcy
  • Politechnika Białostocka
Bibliografia
  • [1] Hyde R. A., H∞ aerospace control design - a VSTOL flight application. New York: Springer, 1996.
  • [2] Tischler M. B., Advances in aircraft flight control. London : Taylor & Francis, 1996.
  • [3] Zhou K., Doyle J., Essentials of Robust Control, Prentice Hall, 1998.
  • [4] Zhou K., Doyle J. C, Glover K., Robust and Optimal Control, Prentice Hall, 1996.
  • [5] Kannan N., Seettharama B., Longitudinal H∞ stability augmentation system for a thrustvectored unmanned aircraft, AIAA Journal of Guidance, Control, and Dynamics, Vol. 28, No. 6, pp. 1240-1250, 2005.
  • [6] Amato F, Cosentino C, lervolino R, Ciniglio U., Robust Ho control of a fly-by-wire aircraft an lft approach, in CCA 2003. Proceedings of 2003 IEEE Conference on Control Applications, Vol. 1. IEEE, pp. 200-205, 2003.
  • [7] Luo W., Chu Y. C., Ling K. V, H∞ inverse optimal attitude tracking control of rigid aircraft, AIAA Journal of Guidance, Control and Dynamics, Vol. 28, No. 3, pp. 481-493, 2005.
  • [8] Kureemun R., Bates D. G., Aircraft flight controls design using constraint output feedback: A H∞ loop shaping approach, AIAA Guidance, Navigation, and Control Conference, 6-9 August, Canada, 2001.
  • [9] Gu G., Chen J., Lee E. B., Parametric H∞ loop shaping and weighted mixed sensitivity minimization, IEEE Transactions on Automatic Control, Vol. 44, No. 4, April 1999.
  • [10] Farret D., Due G., Harcaut J. P., Multi-rate H∞ loop shaping control applied to missile autopilot design, AIAA Guidance, Navigation, and Control Conference, 6-9 August Canada, 2001.
  • [11] Smit M. Z., Criig I. K., Robust flight controller design using H∞ loop shaping and dynamic inversion techniques, AIAA-98-4132, 1998.
  • [12] Snell S. A., Enns D. F., Garrad W. L., Nonlinear inversion flight control for a super maneuverable aircraft, Journal of Guidance, Control and Dynamics, Vol. 15, No. 4, July-August 1992.
  • [13] McFarland M. B., Hogue S., Robustness of a nonlinear missile autopilot designed using dynamic inversion, AIM Guidance, Navigation, and Control Conference, 14-17 August 2000.
  • [14] Siwakosit W., Snell S. A., Hess R. A., Robust flight control design with handling qualities constraints using scheduled linear dynamic inversion and loop shaping, IEEE Transactions on Automatic Control, Vol. 8, No. 3, May 2000.
  • [15] Ito D., Ward D. T., Valasek J., Robust dynamic inversion controller design and analysis for the X-38, AIM Guidance, Navigation, and Control Conference, 6-9 August Canada, 2001.
  • [16] Shue S. -P., Shi P., H∞ Robust pole placement of single input uncertain systems for control of aircraft, Guidance, Navigation, and Control Conference, AIAA-97-3454, 1997.
  • [17] Markerink J., Bennani S., Mulder B., Design of a robust, scheduled controller for the HIRM using μμ-Synthesis, GARTEUR FM(AG08) TP-088-29, 1997.
  • [18] Tu K. Y., Sideris A.,, Mease K. D., Nathan J., Carter J., Robust lateral-directional control design for the F/A-18, In: AIM Guidance, Navigation, and Control Conference and Exhibit, Portland, OR, Aug, Vol. 2, pp. 1213-1219, 1999.
  • [19] Reigelsperger W. C., Hammett K. D, Banda S. S., Robust control law design for lateral-directional modes of an F-16/MATV using μμ-Synthesis and dynamic inversion, International Journal of Robust and Nonlinear Control, Vol. 7, pp. 777-795, 1997.
  • [20] McCormick B. W., Aerodynamics, aeronautics and flight mechanics, Wiley, New York, 1979.
  • [21] Greenblatt D., Wygnanski I. J., Use of periodic excitation to enhance airflow performance at low Reynolds numbers, J. Aircraft 38 (1), pp. 190-192, 2001.
  • [22] Mystkowski A., Sterowanie mikro-samolotem z piezo-generatorami wirów krawędziowych - modelowanie, badania w tunelu aerodynamicznym i testy poligonowe, Raport projektu rozwojowego nr 0059/R/T00/2008/06, Białystok, 2010.
  • [23] www.mathworks.com.
  • [24] http://www.topmodelcz.cz
  • [25] Etkin B., Reid L. D., Dynamics of flight, stability and control, 3rd edition, John Wiley & Sons. Inc., 1996.
  • [26] Sanchez-Pena R.S., Sznaier M., Robust Systems, Theory and Applications, 1998, John Wiley.
  • [27] http://procerus.com
  • [28] Kestrel autopilot system, Autonomous autopilot and ground control for small unmanned aerial vehicles, Kestrel user guide, Procerus Technologies, 2008.
  • [29] Matthews J.S., Adaptive Control of micro AIR vehicles, Master thesis, Brigham Young University, 2006.
  • [30] Markin S., Multiple simultaneous specification attitude control of a mini flying-wing unmanned aerial vehicle, Master thesis, University of Toronto, 2010.
  • [31] Mystkowski A., Gosiewski Z., Boundary layer control in delta micro air vehicle with vortex piezo-generators, VI Konferencja Awioniki Rzeszów-Bezmiechowa, 16-18 września 2010.
  • [32] Mystkowski A., Analiza aerodynamiki układu sterowania mikro-samolotem typu delta z wbudowanymi piezo-generatorami wirów krawędziowych, Acta Mechanica et Automatica, Vol. 4, No. 3, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0112-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.