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Abstract 
 

Extracting synchronization-free parallelism by means of the Iteration 
Space Slicing Framework results in parallel pseudo-code that is 

independent on  a parallel computer architecture and API/library, hence it 

cannot be directly compiled. For producing parallel programs for shared 
memory multiprocessors, Threading Building Blocks (TBB) can be 

applied that is a library  supporting  scalable parallel programming based 

on the standard C++ language. In this paper, we present how to benefit 
from TBB in practice on the basis of pseudo-code representing   

synchronization-free slices produced by a tool using the Omega Library. 

Results of experiments with the NAS benchmarks suite are presented. 
 
Keywords: synchronization-free slices, parallel computing, tasking, Intel 
Threading Building Blocks. 

 

Programowanie równoległości wolnej od 
synchronizacji przy użyciu Intel TBB 

 

Streszczenie 

 

Zastosowanie techniki opartej na ekstrakcji równoległości pozbawionej 

synchronizacji w pętlach programowych pozwala na wygenerowanie 
pseudokodu, który jest niezależny od architektury komputera oraz języka 

lub biblioteki programowania. Taki kod nie może być wprost 

kompilowany. Jest wymagane przekształcenie takiego pseudokodu na 
rzeczywisty kod równoległy.  W tym celu może być zastosowane 

narzędzie Intel Threading Building Blocks, które jest biblioteką 

wspierająca skalowalne programowanie równoległe w standardzie C++. 
Nie wymaga specjalnego języka programowania i specjalnych 

kompilatorów. Zaletą biblioteki Threading Building Blocks jest możliwość 

uruchomienia w dowolnym środowisku programowo-sprzętowym  
i systemie operacyjnym. W artykule przedstawiono korzyści wynikające  

z tworzenia aplikacji równoległych za pomocą TBB. Wyjaśniono sposób 

poszukiwania instancji instrukcji fragmentów kodu przy użyciu biblioteki 
Omega i tworzenie najpierw równoległego pseudo-kodu, a dalej 

transformacja pseudokodu na kod równoległy z wykorzystaniem TBB. 

Proponowane podejście zostało zweryfikowane za pomocą zbioru pętli 
testowych z benchmarku NAS. Zbadano przyspieszenie i efektywność 

kodu równoległego oraz skalowalność w aspekcie do zmiennego rozmiaru 

obliczeń badanych pętli. 
 
Słowa kluczowe: fragmenty kodu pozbawione synchronizacji, 

równoległość, zadaniowość, Intel Threading Building Blocks. 

 

1. Introduction 
 

Multi-core processors have made parallel programming a topic 

of interest for every programmer. Computer systems without 

multiple processor cores have become relatively rare. In our recent 

work [1] we proposed several algorithms to extract coarse-grained 

parallelism represented with synchronization-free slices consisting 

of the loop statement instances by means of the Iteration Space 

Slicing Framework (ISSF). Parallelism is represented by pseudo-

code, i.e., such a code represents all extracted parallelism but 
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cannot be directly compiled. There is the need to convert it to  

a real code being dependent on an computer architecture and 

API/Language.    

In the current paper, we focus on generating the parallel Intel 

Threading Building Blocks (TBB) code [2], [3] on the basis of  

a pseudocode representing synchronization-free slices. Intel TBB 

is a C++ template library for developing parallel programs; it 

extends C++ by abstracting away thread management and 

allowing straightforward parallel programming.  The parallel code 

consists of tasks, not threads. Moreover, the library maps tasks 

onto threads in an efficient manner [3]. 

 

2. Iteration Space Slicing Framework 
 

The approach to extract synchronization-free parallelism in 

program loops by means of the Iteration Space Slicing Framework 

requires an exact representation of dependences. Two statement 

instances s1(I) and s2(J) are dependent if both access the same 

memory location and if at least one access is a write. s1(I) and 

s2(J) are called the source and destination of a dependence, 

respectively, provided that s1(I) is lexicographically smaller than 

s2(J) (s1(I)   s2(J), i.e., s1(I) is always executed before s2(J)). 

To describe and implement our algorithms, we choose the 

dependence analysis proposed by Pugh and Wonnacott [4] where 

dependences are represented by dependence relations whose 

constraints are described in the Presburger arithmetic (built of 

affine equalities and inequalities, logical and existential 

operators); the Omega library is used for computations over such 

relations [5]. 

A dependence relation is a tuple relation of the form 

 

 {[input list]   [output list]: constraints}; (1) 

 

where input list and output list are the lists of variables and/or 

expressions used to describe input and output tuples and 

constraints is a Presburger formula describing constraints imposed 

upon input list and output list. 

We use standard operations on relations and sets, such as 

intersection ( ), union ( ), difference (-), domain of relation 

(domain(R)), range of relation (range(R)), relation application 

(given a relation R and set S, R(S) = {[e’]:  e   S, ee’R), 

positive transitive closure (given a relation R, R+ = {[e]   [e’]: e 

  e’   R ||   e’’ s.t. e   e’’   R & e’’e’R+}), transitive 

closure (R* = R+   I, where I is the identity relation). These 

operations are described in detail in [5]. 

Iteration Space Slicing [1] takes dependence information as the 

input to find all statement instances that must be executed to 

produce the correct values for the specified array elements. 
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Definition 1. Given a dependence graph, D, defined by a set of 

dependence relations, S, a slice is a weakly connected component 

of graph D, i.e., a maximal subgraph of D such that for each pair 

of vertices in the subgraph there exists a directed or undirected 

path. 

If there exist two or more slices in D, then taking into account 

the above definition, we may conclude that all slices are 

synchronization-free, i.e., there is no dependence between them. 

Definition 2. An ultimate dependence source (destination) is  

a source (destination) that is not the destination (source) of another 

dependence. Ultimate dependence sources and destinations 

represented by relation R can be found by means of the following 

calculations: (domain(R) - range(R)) and (range(R) - domain(R)), 

respectively. 

Definition 3. A source(s) of a slice is an ultimate dependence 

source(s) that this slice contains. 

Definition 4. A representative loop statement instance of a slice 

is its lexicographically minimal source. 

Further on in this paper, we refer to representative loop 

statement instances as to representatives. 

The approach to extract synchronization-free slices [1] relies on 

the transitive closure of an affine dependence relation describing 

all dependences in a loop and consists of two steps. First, 

representatives of slices are found in such a manner that each slice 

is represented with its lexicographically minimal statement 

instance. Next, slices are reconstructed from their representatives 

and code scanning these slices is generated. Details of this 

technique are presented in paper [1]. 

In the second step, we can use the Gen affine algorithm [1] in 

order to reconstruct slices.  The algorithm allows us to generate 

code scanning synchronization-free slices of an arbitrary topology 

of the dependence graph when the transitive closure of  

a dependence relation representing all the dependences available 

in a given program loop.  This algorithm uses well-known code 

generation techniques to scan elements of affine sets representing 

synchronization-free slices. Slices reconstruction can be realized 

also by means of other algorithms presented in papers [6], [8]. The 

output of these algorithms is pseudo-code representing all 

extracted synchronization-free slices. Converting pseudo-code into 

a parallel program can be implemented using various multi-

threading tools, for example: OpenMP, NVIDIA CUDA, MPI, or 

Intel TBB. 

 

3. Intel Threading Building Blocks 
 

Intel Threading Building Blocks offers a rich and complete 

approach to expressing parallelism in a C++ program. TBB  is  not  

just  a  threads-replacement  library;  it  represents  a  higher-level,  

task-based parallelism  that abstracts  platform  details and  

threading  mechanisms  for performance and scalability[2].  

There is a variety of approaches to parallel programming, 

ranging from the use of platform-dependent threading primitives 

to exotic new languages. The advantage of Threading Building 

Blocks is that it works at a higher level than raw threads. The 

library can be used with any compiler supporting ISO C++ and it 

does not require special languages or compilers. [3].  

TBB differs from typical threading packages in the following 

ways [2]: enables programmer to specify tasks instead of threads; 

is compatible with other threading packages; emphasizes scalable, 

data-parallel programming and targets threading for performance; 

relies on generic programming - the library can be integrated with 

the C++ Standard Template Library (STL). 

Intel Threading Building Blocks enables the programmer to 

write parallel programs when parallelism is already extracted. 

Scalable parallelism can be represented by a loop of iterations 

running simultaneously without interfering with each other. In 

order to implement TBB loops including synchronization-free 

slices, the directive tbb:parallel_for  can be used. 

 

 

4. Example 
 

Let us illustrate how parallel TBB loops can be formed by 

means of the following FT_auxfnct_2 NAS loop [9]. 

 
for(i=1; i<=N1; i++) 

  for(k=1; k<=N2; k++)  

    for(j=1; j<=N3; j++){  

   y[j][k][i]=y[j][k][i]*twiddle[j][k][i]; 

   x[j][k][i]=y[j][k][i]; 

 } 

 

Dependences available in this loop are represented by the 

dependence relation returned by Petit [5]: 

 
R = {[i,k,j,22] -> [i,k,j,26] : 1 <= i <= N1 && 1 

<= k <= N2 && 1 <= j <= N3}. 

 

Following the Gen affine algorithm [1] and using   the Omega 

calculator, we extract representatives of slices, represented by the 

following set:   

 
SOUR = {[i,k,j,22]: 1 <= i <= N1 && 1 <= k <= N2 

&& 1 <= j <= N3}. 

 

Next, we reconstruct synchronization-free slices and generate 

parallel pseudo-code: 

 
if (N3 >= 1 && N2 >= 1) { 

 par for(t1 = 1; t1 <= N1; t1++) { 

  for(t2 = 1; t2 <= N2; t2++) { 

   for(t3 = 1; t3 <= N3; t3++) { 

  y[t3][t2][t1]=y[t3][t2][t1]*twiddle[t3][t2][t1];    

    if (t3 >= 1 && N3 >= t3 && t2 >= 1 && N2 >= t2 

&& t1 >= 1 && N1 >= t1) { 

  x[t3][t2][t1]=y[t3][t2][t1];  

} 

}}}} 

 

It represents all extracted slices. 

Then, we manually transform the above code to the parallel 

Intel TBB code: 

 
using namespace tbb; 

... 

class FT_Aux { 

 

float ***x; 

float ***y; 

float ***twiddle; 

 

public: 

void operator()( const blocked_range<size_t>& r ) 

const { 

 

int t2, t3; 

if (N3 >= 1 && N2 >= 1) { 

// parallel loop  

for( size_t t1=r.begin(); t1 != r.end(); ++t1 ){   

 for(t2 = 1; t2 <= N2; t2++) { 

  for(t3 = 1; t3 <= N3; t3++) { 

  y[t3][t2][t1]=y[t3][t2][t1]*twiddle[t3][t2][t1];    

  if (t3 >= 1 && N3 >= t3 && t2 >= 1 && N2 >= t2 

&& t1 >= 1 && N1 >= t1) { 

 x[t3][t2][t1]=y[t3][t2][t1];  

} 

  } 

}}}} 

 

//constructor 

FT_Aux( float ***_x, float ***_y, float 

***_twiddle) 

  {x = _x; y = _y; twiddle = _twiddle;} 

 

}; 
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int main(int argc, char **argv){ 

 

... 

// parallelizing loops with tasking 

parallel_for(blocked_range<size_t>(1,N1+1),  

FT_Aux(x, y, twiddle));   

... 

} 

 

The using directive in the example enables the programmer to 

use the library identifiers without having to write out the 

namespace prefix tbb before each identifier.  

An instance of the FT_Aux class needs member fields that 

remember all the local variables that were defined outside the 

original loop but used inside it. Usually, the constructor for the 

body object will initialize these fields, though parallel_for 

does not care how the body object is created.  

The iteration space here is of type size_t, and goes from 1 to 

N1. The template function tbb::parallel_for breaks this 

iteration space into chunks, and runs each chunk on a separate 

thread. The first step in parallelizing this loop is to convert the 

loop body into a form that operates on a chunk. The form is an 

STL-style function object, called the body object, in which 

operator() processes a chunk. The object is an important 

function of the FT_Aux class and includes the body of the parallel 

loop. 

Note the argument to operator(). A blocked_range<T> is 

a template class provided by the library. It describes a one-

dimensional iteration space over type T. This class is the first 

argument of parallel_for. The second argument is the 

constructor of the FT_Aux class with pointers to shared data.  

The Parallel_for function is called in the main program. 

Since version 2.2, Intel TBB chooses chunk sizes automatically, 

depending upon load balancing needs. The heuristic attempts to 

limit overheads while still providing ample opportunities for load 

balancing. The default automatic chunking is recommended for 

most uses. However, it can be controlled manually as the  third 

argument of blocked_range<T> describing size of grain [3]. 

 

5. Experiments 
 

We have examined parallel codes produced on the basis of the 

Iteration Space Slicing Framework for the following three NAS 

Parallel Benchmark loops [9]: FT_auxnfct_2, UA_diffuse_5, 

UA_setup_16   presented in table 1.  

We have studied the speedup and efficiency of TBB parallel 

codes on the multiprocessor machine: 8x Intel Quad Core, 1.6 

GHz, 3 GB RAM, Fedora Linux.  The results of experiments: 

time, sped-up S, and efficiency E for 1, 2, 8, and 32 cores are 

presented in Table 2. The produced parallel code is characterized 

by positive speed-up (S>1). The efficiency of parallel code 

increases as the volume of computations executed by this code 

increases. 

Analyzing the data in this table, we can conclude that the 

presented approach can be applied to producing efficient parallel 

code for real-life loops using the Iteration Space Slicing 

Framework and Intel Threading Building Blocks.   

 
Tab. 1.  Examined loops from NAS benchmark 

Tab. 1. Badane pętle programowe z zestawu NAS 

 

FT_auxfnct_2 

 

for(i = 1; i <= N1; i++){ 

 for(k = 1; k <= N2; k++){ 

  for(j = 1; j <= N3; j++){ 

     y[j][k][i]=y[j][k][i]*twiddle[j][k][i]; 

     x[j][k][i]=y[j][k][i]; 

}} } 

 

UA_diffuse_5 

 

for(k = 1; k <= N1; k++) 

 for(iz = 1; iz <= N2; iz++) 

  for(j = 1; j <= N3; j++) 

    for(i = 1; i <= N4; i++) 

       

r[i][j][iz]=r[i][j][iz]+u[i][j][k]*wdtdr[k][iz]; 

 

UA_setup_16 

 

for(i=1; i<=N1; i++) 

 for(j=1; j<=N2; j++) 

  for(ip=1; ip<=N3; ip++) 

     wdtdr[i][j] = wdtdr[i][j] + 

wxm1[ip]*dxm1[ip][i]*dxm1[ip][j]; 

 

 

 
Tab. 2.  Time of calculation, speed-up, efficiency of parallelized loops executed  

by different number of CPU processors 

Tab. 2.  Czas wykonania, przyspieszenie i efektywność obliczeń zrównoleglonych 

pętli równoległych wykonanych za pomocą różnej liczby procesorów 

 

Loop Parameters 
1 CPU 2 CPUs 8 CPUs 32 CPUs 

Time Time S E Time S E Time S E 

FT_auxnfct_2 

N1,N2,N3=100 0,387 0,231 1,675 0,838 0,081 4,778 0,597 0,046 8,413 0,263 

N1,N2,N3=150 1,931 1,065 1,813 0,907 0,301 6,415 0,802 0,130 14,854 0,464 

N1,N2,N3=200 4,859 2,431 1,999 0,999 0,661 7,351 0,919 0,322 15,090 0,472 

UA_diffuse_5 

N1,N2=64, 

N3=N4=32 
0,031 0,023 1,348 0,674 0,008 3,875 0,484 0,006 5,167 0,161 

N1, N2=64, 

N3=N4=128 
0,155 0,097 1,598 0,799 0,031 5,000 0,625 0,015 10,333 0,323 

N1,N2=64, 

N3=N4=256 
0,767 0,422 1,818 0,909 0,121 6,339 0,792 0,050 15,340 0,479 

UA_setup_16 

N1,N2=500 0,453 0,300 1,510 0,755 0,076 5,961 0,745 0,032 14,156 0,442 

N1,N2=1000 2,153 1,376 1,565 0,782 0,322 6,686 0,836 0,125 17,224 0,538 

N1,N2=2000 6,541 4,065 1,609 0,805 1,007 6,496 0,812 0,329 19,881 0,621 

 

 

6. Related work 
 

Along with Intel Threading Building Blocks, another promising 

abstraction for C++ programmers is OpenMP [2], [7]. OpenMP is 

a language extension consisting of pragmas, routines, and 

environment variables. OpenMP has been referred to as 

“convenient for Fortran-style code written in C”.  However, 

OpenMP contains nothing special for language C++ [2]. The loop 

structures are the same loop nests that were developed for vector 

supercomputers—an earlier generation of parallel processors that 

performed tremendous amounts of computational work in very 

tight nests of loops and were programmed largely in Fortran. 

Transforming those loop nests into parallel code could be very 

rewarding in terms of results. 

Intel Threading Building Blocks can be joined with other 

threading libraries. Below is an example that parallelizes an outer 

loop with OpenMP and an inner loop with Intel Threading 

Building Blocks [3]. 

 
void TBB_NestedInOpenMP() {  

#pragma omp parallel  

{  

#pragma omp for  

for( int i=0; i<M; ++j ) {  

paralel_for(blocked_range<size_t>(1,N1+1),  

FT_Aux(x, y, twiddle));   

    }  

}  

} 
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Supercomputer users, with their thousands of processors, do not 
generally have the luxury of shared memory, so they use message 
passing, most often through the popular Message Passing Interface 
(MPI) standard [10]. The tool exposes the control of parallelism at 
its lowest level.  As such, they offer maximum flexibility, but at  
a high cost in terms of programmer effort, debugging time and 
maintenance costs. Using Threading Building Blocks to express 
parallelism with tasks allows developers to express more 
concurrency and finer-grained concurrency than would be possible 
with threads, leading to increased scalability [2]. 
 

7. Conclusion and future work 
 

There has been presented a way how to form representative 
loop statement instances of synchronization-free slices in practice 
by means of Intel Threading Building Blocks. Experiments with 
NAS loops were carried out for speed-up and efficiency analysis 
using machine containing 32 processing units.   

Threading Building Blocks is designed for C++, and thus to 
provide the simplest possible solutions for the types of programs 
written in C++. Hence, Threading Building Blocks is not limited 
to statically scoped loop nests.  

In our future work, we plan to design a tool for the automatic 
translation of ISSF pseudo-code to a TBB application.  
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