Piotr WARDA

POLITECHNIKA LUBELSKA, ul.Nadbystrzycka 38D, 20-618 Lublin

Metoda zmniejszenia wartości błędu uśredniania w systemie pomiarowym wykorzystującym przetwornik "napięcie-częstotliwość"

Dr inż. Piotr WARDA

Absolwent Wydziału Elektrycznego Politechniki Lubelskiej (1995r.). Od 2000 roku pracownik naukowodydaktyczny Katedry Automatyki i Metrologii Politechniki Lubelskiej. Rozprawę doktorską obronił w 2008 roku. Obszar jego zainteresowań obejmuje miernictwo cyfrowe i przetwarzanie sygnałów pomiarowych.

e-mail: p.warda@pollub.pl

Streszczenie

Przetwarzanie zmiennego napięcia w przetworniku typu "napięcieczęstotliwość" powoduje wygenerowanie sygnału wyjściowego o zmiennej częstotliwości. Istotnym składnikiem wypadkowego błędu przetwarzania informacji o wejściowym, zmiennym napięciu jest błąd uśredniania, którego wartość rośnie wraz ze zmniejszaniem częstotliwości wyjściowej przetwornika. W pracy opisano metodę pozwalającą na zmniejszenie błędu uśredniania poprzez zadawanie dodatkowego napięcia korygującego.

Słowa kluczowe: przetwornik "napięcie-częstotliwość", pomiar częstotliwości, tor z częstotliwościowym nośnikiem informacji.

A method for decreasing the average error in a measurement system using a "voltageto-frequency" converter

Abstract

The paper presents a new method decreasing the total error in a slotted line with a frequency carrier of information. A changeable voltage conversion in a "frequency-to-voltage" converter causes generation of a signal of changeable frequency. In the presented situation the essential component of the total conversion error is the average error. When the frequency of a "voltage-to-frequency" converter output signal is decreased, the average error rises. The paper describes the method which allows decreasing the average error by setting the additional correcting voltage. Recent research on decreasing the conversion error in a slotted line are presented in the paper. Influence of the error components on conversion is also discussed (Fig. 1). There has been obtained the formula describing how a quotient of the constant component to the frequency signal amplitude influence the total error (1). A schematic diagram of a system for correction of the constant component is shown in Fig.3. There is also given the analysis of influence of the constant component on the total error (Fig. 5). The procedure for correction of the constant component is described and the procedure algorithm is given.

Keywords: "voltage-to-frequency" converter, frequency measurement, slotted line with a frequency carrier of information.

1. Wstęp

Tor pomiarowy z częstotliwościowym nośnikiem informacji jest coraz częściej stosowany do przetwarzania i przesyłania informacji o obiekcie badanym. Powodem są zalety sygnału częstotliwościowego, do których można zaliczyć między innymi łatwość przesyłania na duże odległości, odporność na zakłócenia oraz prostotę realizacji operacji matematycznych bezpośrednio na sygnale. Przetworniki "wielkość fizyczna – częstotliwość" stosowane są w wielu dziedzinach życia codziennego, m.in. do badań rytmu serca, w technice radarowej, w pomiarach temperatury i napięcia. Zazwyczaj w powyższych przypadkach, z powodu zmienności badanej wielkości, zachodzi konieczność mierzenia wartości chwilowej częstotliwości. Często stosuje się wówczas przetwarzanie czestotliwości w napiecie, które jest mierzone za pomocą przetwornika analogowo-cyfrowego. Takie rozwiązanie komplikuje układ pomiarowy. Interesującym rozwiązaniem, pozwalającym na uproszczenie układu, jest pośredni pomiar częstotliwości, poprzez pomiar czasu trwania kolejnych okresów sygnału częstotliwościowego - czasów T_{xi} . W pracy [6] podjęto próbę oszacowania wpływu błędów składowych na wypadkowy błąd przetwarzania γ_{FC} w torze z częstotliwościowym nośnikiem informacji. Ustalono, że dla małych wartości T_{xi} przeważający wpływ ma wprowadzany przez kwantyzator częstotliwości (f/C)[2] błąd kwantowania γ_{k_2} natomiast dla dużych wartości T_{xi} przeważający wpływ ma błąd uśredniania γ_{μ} . Przykładowe wykresy wspomnianych błędów i błędu wypadkowego γ_{FC} pokazano na rysunku 1. Na wykresie błędu γ_{FC} można zauważyć minimum T_{min} , stanowiące granicę przeważającego wpływu błędu kwantowania i błędu uśredniania.

W pracy [7] został zaproponowany i zweryfikowany eksperymentalnie sposób zmniejszenia błędu kwantowania dla wartości T_{xi} mniejszych od T_{min} . Aktualne badania skupiają się na opracowaniu metody zmniejszenia błędu γ_{FC} powstającego w zakresie, w którym dominuje błąd uśredniania $(T_{xi} > T_{min})$.

Rys. 1. Zależność składowych błędu wypadkowego od czasu T_{xi} Fig. 1. Total error components vs. time T_{xi}

W pracy [8] pokazano, że wartość błędu γ_{FC} , zależy od czterech parametrów sygnału częstotliwościowego: czasu T_{xi} , częstotliwości napięcia wejściowego F, wartości składowej stałej f_0 i wartości amplitudy f_m . Błąd wypadkowy wprowadzany przez przetwornik f/C dla sinusoidalnie zmiennego napięcia wejściowego opisano zależnością [8]:

$$\gamma_{FC} = \left(\frac{T_0}{T_{xi}} + (1 - \frac{\sin(\pi \ T_{xi}F)}{\pi \ T_{xi}F})\frac{1}{\frac{f_0}{f_m} + 1}\right) * 100\%$$
(1)

gdzie: T_0 – okres wzorcowego generatora zegarowego wbudowanego w wewnętrzną strukturę przetwornika f/C.

Wykres błędu γ_{FC} w zależności od ilorazu f_o/f_m (rys.2) pokazuje, że wraz ze wzrostem wartości stosunku składowej stałej sygnału częstotliwościowego do jego amplitudy wartość błędu γ_{FC} maleje. Zatem możliwe są dwa sposoby zmniejszenia wartości γ_{FC} : zmniejszenie amplitudy składowej przemiennej napięcia podanego na przetwornik U/f lub zwiększenie składowej stałej U_0 przebiegu napięciowego. Zmiana amplitudy sygnału wejściowego jest możliwa poprzez zastosowanie układu kondycjonowania dobierająceganą, zadowalającą wartością błędu γ_{FC} . Wówczas powstaje jednak problem spowolnienia pracy toru pomiarowego na skutek częstych zmian zakresu układu kondycjonowania. Natomiast regulacja składowej stałej, przy odpowiedniej konstrukcji układu regulującego, może być realizowana w sposób ciągły bez dodatkowych opóźnień w pracy toru pomiarowego.

Przedmiotem niniejszej pracy jest przedstawienie metody zmniejszenia błędu wypadkowego przetwarzania γ_{FC} dla wartości T_{xi} większych od T_{min} , poprzez zmniejszenie wartości dominującego w tym zakresie składnika – błędu uśredniania, za pomocą układu zadającego dodatkową składową stałą na wejście przetwornika "napięcie-częstotliwość" (U/f).

Rys. 2. Wykres błędu wypadkowego w zależności od ilorazu f_0/f_m [8] Fig. 2. The total error as a function of the quotient f_0/f_m [8]

2. Układ zadawania składowej stałej

Przyjęto, że rozważaniom zostanie poddany tor pomiarowy z częstotliwościowym nośnikiem informacji, zawierający elementy pozwalające na dodawanie składowej stałej. Schemat proponowanego toru przedstawiono na rysunku 3.

- Rys. 3. Schemat układu do korekcji składowej stałej
- Fig. 3. Diagram of the constant component correction system

W skład toru pomiarowego wchodzą [4]:

- Przetwornik U/f przetwarzający mierzone napięcie w przebieg o zmiennej częstotliwości.
- Kwantyzator częstotliwości, przeprowadzający pomiar kolejnych, następujących po sobie czasów T_{xi} . Ze względów praktycznych, tj. możliwość powstania zbyt dużych opóźnień w przekazywaniu danych na bieżąco do PC, kwantyzator musi jednocześnie przeprowadzać pomiar T_{xi} i gromadzić we własnej pamięci wartości liczbowe proporcjonalne do zmierzonych czasów T_{xi} . Wyniki są przekazywane do PC po zakończeniu całego procesu pomiaru. Z tego powodu wartość dodatkowej, korygującej składowej stałej, która może być wyliczona jedynie w trakcie trwania procesu pomiaru, musi być wyliczana przez kwantyzator.
- Przetwornik C/A służy do wytworzenia napięcia dodatkowej składowej stałej o wartości określonej przez kwantyzator f/C.
- Klucz pozwala na dołączenie wytworzonej, dodatkowej składowej stałej do mierzonego napięcia u_x(t) w chwili wysterowania go przez kwantyzator f/C.

 PC – ze względów podanych wyżej rolą komputera jest nadzorowanie procesu pomiaru, odbiór zgromadzonych wyników, ich wizualizacja i archiwizacja.

Z podanych wyżej powodów funkcję doboru składowej stałej realizuje kwantyzator f/C. Jego głównym zadaniem jest przetwarzanie kolejnych wartości czasu T_{xi} w odpowiadające im wartości liczbowe N_{xi} [4]. Z tego powodu wyznaczanie wartości składowej stałej nie może trwać zbyt długo, ponieważ zostanie wówczas zakłócony główny proces pomiaru. Algorytm dodatkowej procedury powinien na początku analizy danego T_{xi} określić relację zmierzonego czasu T_{xi} do czasu T_{min} (rys.1), i jeżeli zachodzi zależność $T_{xi}>T_{min}$, wyliczyć wartość składowej stałej, która ma być dodana w procesie przetwarzania kolejnego T_{xi} .

W celu określenia zależności na T_{min} dokonano przekształcenia wzoru (1) przy założeniach że: γ_{FC} nie będzie podawane w procentach. Przyjmując, że zachodzi najbardziej niekorzystny przypadek tj. $f_0=f_m$, oraz wykorzystując rozwinięcie w szereg Taylora:

$$\frac{\sin(\pi FT_{xi})}{\pi FT_{xi}} = 1 - \frac{(\pi FT_{xi})^2}{6},$$
 (2)

uzyskuje się wzór:

$$\gamma_{FC} = \frac{T_0}{T_{xi}} + \frac{(\pi F T_{xi})^2}{6} \,. \tag{3}$$

Rys. 4. Przetwarzanie sygnału w torze z częstotliwościowym nośnikiem informacji

Fig. 4. Signal transformation in the slotted line with a frequency carrier of information

Wartość T_0 jest dobierana konstrukcyjnie, F dla określenia maksymalnej wartości błędu musi być [7] częstotliwością najwyższej harmonicznej napięcia $u_x(t)$, natomiast γ_{FC} jest maksymalnym błędem, dopuszczalnym dla danego pomiaru. Przy takich założeniach jedyną zmienną jest T_{xi} . W celu uzyskania zależności na T_{min} przyrównano zależność (3) do zera i obliczono pierwszą pochodną. Po przekształceniach wzór ten przyjął postać:

$$T_{\min} = \sqrt[3]{\frac{6T_0}{(\pi F)^2}}$$
 (4)

Sposób przetwarzania sygnału w omawianym torze przedstawiono na rysunku 4. Pierwszy wykres u(t) pokazuje przebieg przykładowego napięcia wejściowego $u_x(t)$ oraz scałkowane przez przetwornik U/f wartości napięcia – U_{sr} dla kolejnych T_{xi} . Wykres $u_{iy}(t)$ pokazuje odpowiadający powyższym napięciom przebieg częstotliwościowy na wyjściu przetwornika U/f. Ostatni przebieg przedstawia impulsy generatora zegarowego zawartego w kwantyzatorze f/C służące do pomiaru czasu trwania kolejnych T_{xi} . Dla każdego rozpatrywanego T_{xi} jedyną informacją, jaką można uzyskać jest wartość średnia napięcia U_{sr} , będąca wynikiem całkowania jego wartości w przetworniku U/f. W konsekwencji, wartość $u_x(t)$ w bieżącym T_{xi} aproksymowana jest przebiegiem prostokątnym o amplitudzie U_{xi} równej obliczonej wartości średniej napięcia U_{sr} dla tego przedziału (rys.4.).

Zastosowanie proponowanej metody ma na celu dodawanie do napięcia wejściowego $u_x(t)$ składowej stałej U_{si} o różnej, wyznaczanej programowo wartości. Dla kolejnych czasów T_{xi} mogą być różne wartości rzeczywistej składowej stałej i wyznaczonego napięcia średniego. Szerzej to zagadnienie zostanie omówione w dalszej części pracy.

Dla rzeczywistego przetwornika U/f wartość składowej stałej powinna być co najmniej równa amplitudzie, ponieważ przy założeniu, że na wejście podajemy napięcie zmieniające się według zależności:

$$u_x(t) = U_0 + U_m \sin(\Omega t), \qquad (5)$$

gdzie:

 U_o - składowa stała, U_m - amplituda, $\Omega=2\pi F$ - pulsacja przebiegu $u_x(t)$, t - czas,

oraz idealnego przetwarzania w przetworniku i czułości przetwornika *K*, częstotliwość sygnału wyjściowego przetwornika *U/f* jest obliczana według zależności [5]:

$$f_{xi}(t) = \frac{1}{T_{xi}} = \frac{1}{t_i - t_{i-1}} = KU_{xi}, \qquad (6)$$

gdzie: t_i , t_{i-1} – chwile wystąpienia impulsów odpowiadających rozpoczęciu i zakończeniu danego czasu T_{xi} .

Składowa stała U_0 mniejsza od amplitudy U_m napięcia $u_x(t)$ (5) powodowałaby generowanie ujemnej częstotliwości, co w rzeczywistych warunkach zachodzić nie może. Można zatem przyjąć, że wartość składowej stałej musi być równa wartości amplitudy, ewentualnie zwiększonej o wybraną przez algorytm kwantyzatora f/C wartość dodatkowej składowej stałej, którą można opisać jako krotność amplitudy k_0 , stąd:

$$U_0 = U_m + k_0 U_m \,. \tag{7}$$

Przekształcając zależność (7) z uwzględnieniem (6), oraz że zachodzi równość $U_m = U_{xi}$ dla aproksymacji wejściowego napięcia przebiegiem prostokątnym (rys. 4) uzyskuje się wzór:

$$U_0 = \frac{1}{K} \left(\frac{1}{T_{xi}} + k_0 \frac{1}{T_{xi}} \right).$$
 (8)

Rys. 5.Wykres błędu przetwarzania w zależności od współczynnikaFig. 5.The total error as a function of the coefficient k_0

W konsekwencji, po uwzględnieniu (6), wyrażenie na błąd wypadkowy (1) przyjmuje postać:

$$\gamma_{FC} = \left(\frac{T_0}{T_{xi}} + \left(1 - \frac{\sin \pi \ T_{xi}F}{\pi \ T_{xi}F}\right)\frac{1}{k_0 + 2}\right) * 100\%$$
(9)

Wykres przedstawiony na rysunku 5 pokazuje, że ze wzrostem wielokrotności wartości amplitudy k_0 błąd γ_{FC} maleje. Zmniejszenie błędu nie jest wprost proporcjonalne do wzrostu zawartości składowej stałej. Z powyższego powodu można uznać, że nie ma konieczności wyliczania z dużą rozdzielczością wartości podawanej na przetwornik C/A, ponieważ przy wzroście dodawanej wartości U_0 niewielkie zmiany praktycznie nie powodują zauważalnego zmniejszenia błędu γ_{FC} . Najlepszym rozwiązaniem jest obliczanie maksymalnej możliwej do dodania dla przetwarzanego T_{xi} składowej stałej. Wówczas błąd γ_{FC} będzie zawsze zbliżony do minimalnego możliwego do uzyskania w danych warunkach.

Razem z zapisywaną wartością czasu T_{xi} należy również zachowywać dodaną składową stałą. Jest to warunek wyliczenia rzeczywistej wartości napięcia wejściowego. Wartość liczbową proporcjonalną do średniej wartości napięcia wejściowego dla pojedynczego czasu T_{xi} wyznacza suma:

$$N_{xi} = N_{xi\Sigma} + N_{si-2} \tag{10}$$

gdzie: $N_{xi\Sigma}$ – wartość liczbowa odczytana przy dodanej składowej stałej, N_{si-2} – wartość liczbowa odpowiadająca składowej stałej zadanej dla danego czasu T_{xi} .

Zważywszy na fakt, że poszczególne czasy T_{xi} obliczane są jako iloczyny stanu licznika i okresu generatora zegarowego [4] (rys.4.), wygodniej jest przejść przy opisie algorytmu na wartości stanu licznika kwantyzatora f/C. W praktyce są one wprost proporejonalne do wartości mierzonych czasów T_{xi} odpowiadających napięciu wejściowemu.

Koncepcja algorytmu zadawania składowej stałej

Przetwarzanie wartości chwilowej częstotliwości w czas zostało dokładnie opisane w [4]. Wartość czasu T_{xi} kwantyzator f/C oblicza po wykryciu na swoim wejściu impulsu kończącego dany T_{xi} (rys. 4). Jest to właściwy moment dla oprogramowania kwantyzatora do rozpoczęcia analizy relacji pomiędzy zmierzonym T_{xi} a minimalnym T_{min} , przy którym uruchamiana jest procedura korygująca składową stałą.

Algorytm korekty składowej stałej napięcia na wejściu przetwornika U/f musi uwzględnić zaimplementowany w torze, pośredni sposób przetwarzania napięcia w wartość liczbową. Informację o długości czasu Txi można uzyskać najwcześniej po jego przetworzeniu przez program kwantyzatora f/C. Wówczas trwa już czas T_{xi+1} . Zważywszy na fakt, że dodanie wartości składowej stałej w trakcie trwania przedziału T_{xi+1} , tj. w trakcie trwania całkowania napięcia przez przetwornik U/f, spowoduje trudną do odtworzenia zmianę w przebiegu napięcia wejściowego, najlepszym rozwiązaniem jest dodawanie składowej stałej na początku przetwarzanego czasu T_{xi+2} , tj. w chwili wygenerowania impulsu przez przetwornik U/f, sygnalizującego koniec czasu T_{xi+1} i początek T_{xi+2} . Tak dodana składowa stała będzie całkowana z przebiegiem $u_x(t)$ w całym czasie T_{xi+2} i kolejnych. Należy pamiętać, że rozważania są przeprowadzone dla przebiegu napięcia wejściowego o kształcie sinusoidalnym. Wykazano w [6] i [7], że wartość błędu wypadkowego (1) zawsze rośnie wraz ze wzrostem częstotliwości F napięcia wejściowego. Wystarczy określić częstotliwość najwyższej harmonicznej napięcia wejściowego i dla niej przeprowadzić obliczenia, aby mieć pewność, że składowe o niższych częstotliwościach będą przetwarzane z mniejszym błędem wypadkowym.

Zamieszczony na rysunku 6 algorytm, przedstawia sposób działania dodatkowej procedury zmniejszającej błąd γ_{FC} . Przetwarzanie rozpoczyna się od inicjacji wartości N_{si} dla pierwszego pomiaru. Później następuje określenie wartości liczbowej N_{xi} , odpowiadającej scałkowanemu w przedziale T_{xi} napięciu $u_x(t)$. W kolejnych cyklach pomiaru uwzględniona jest również wartość odpowiadająca zadanej w chwili *i*-2 składowej stałej N_{si-2} (10). N_{xi} jest wykorzystywana do określania operacji wykonywanej przez procedurę. W przypadku przekroczenia dozwolonej, określonej w oprogramowaniu wartości granicznej N_g odpowiadającej T_{min} , następuje wyliczenie potrzebnej korekty wartości N_{si} jako różnicy pomiędzy N_{xi} i N_g . Uwzględniając, że T_{min} jest określony jako przedział czasu, czyli iloczyn N_g i okresu generatora zegarowego T_0 , zależność na N_g można wyprowadzić z prostego przekształcenia zależności na T_{min} (4):

$$N_g = \sqrt[3]{\frac{6}{(T_0 \pi F)^2}}$$
(11)

Rys. 6. Algorytm procedury korekty składowej stałej

Fig. 6. Algorithm of the constant component correction procedure

W przypadku, gdy wartość N_{xi} jest mniejsza od granicznej N_g , procedura zeruje wartość liczbową L_{si} , przerywając wyliczanie i dodawanie składowej stałej. Efektem działania procedury jest asymetria błędu całkowitego. Ze względu na ograniczoną objętość artykułu problem ten zostanie omówiony w kolejnej pracy autora.

Po przeprowadzonych obliczeniach dla każdego T_{xi} kwantyzator f/C w pamięci zachowuje wartości N_{xi} i N_{si-2} . Służą one do obliczenia rzeczywistej wartości średniej napięcia U_{si} i jego położenia w czasie oraz wartości liczbowej N_{si} potrzebnej do obliczenia napięcia do podania w chwili *i*+2 przez przetwornik C/A.

Obliczanie w komputerze PC scałkowanych wartości napięcia wejściowego $U_{xi}=U_{sr}$ (rys. 4) dla kolejnych T_{xi} zawierających dodatkową składową stałą odbywa się dwuetapowo. Na początku zostanie obliczone położenie wartości średniej napięcia na osi czasu, w przypadku przebiegu testowego sinusoidalnego jest to t_i +0,5 T_{xi} [3], czyli:

$$t_{xi}^* = t_i + 0.5N_{xi\Sigma}T_0 \tag{12}$$

Napięcie U_{xi} natomiast oblicza się, po odjęciu wartości liczbowej odpowiadającej zadanej składowej stałej (10), z przekształconego wzoru (6):

$$U_{xi} = \frac{1}{KT_0 N_{xi}} \tag{13}$$

4. Wnioski

Analiza działania procedury korygującej wartość napięcia podawanego na przetwornik U/f pokazuje skuteczność proponowanej metody. Dodawanie wyznaczanych dla kolejnych czasów Txi dodatkowych składowych stałych Usi wymusza zwiększanie napięcia na wejściu przetwornika U/f i skrócenie mierzonych w następnych cyklach przetwarzania czasów T_{xi} . W efekcie, np. dla T_{xi} =15ms (rys.5.), błąd wypadkowy zmienia się z ok. 1,8% dla pracy bez procedury korygującej do ok. 0,1% przy składowej stałej wynoszącej 50fm. Oczywiście nie w każdych warunkach można zrealizować zadawanie składowej stałej o takiej wartości, jest to uzależnione od wartości napięcia wejściowego, ale przykład pokazuje, że zasada działania metody jest poprawna. Ponieważ błąd uśredniania, a co za tym idzie również wypadkowy γ_{FC} , maleje wraz ze zmniejszaniem długości czasu T_{xi} aż do T_{min} (rys.5), można stwierdzić, że proponowana metoda powoduje zmniejszenie błędu wypadkowego przetwarzania w torze, wymuszając pracę kwantyzatora częstotliwości w otoczeniu minimum błędu wypadkowego, czyli dla wartości czasów T_{xi} bliskich T_{min}.

Przedstawiona metoda może być przydatna przy projektowaniu przyrządów do przetwarzania przebiegów częstotliwościowych wolnozmiennych.

Dalsze prace nad przedstawioną metodą skupiają się na opracowaniu modelu toru pozwalającego na realizację procedury korekty składowej stałej według przedstawionych założeń oraz eksperymentalnym oszacowaniu błędów wprowadzonych przez proponowane rozwiązanie.

5. Literatura

- CTM-PER Conntinous-Period Counter, User's Guide, Keithley MetraByte Co. 1990.
- [2] Jakubiec J.: Błędy i niepewności danych w systemie pomiarowosterującym, Wydawnictwo Politechniki Śląskiej, Gliwice 2010.
- [3] Jasik J.R.: Przetwarzanie sygnałów pomiarowych w systemach z częstotliwościowym nośnikiem informacji, Wydawnictwo Politechniki Lubelskiej, Lublin 2003, s. 95.
- [4] Jasik J.R., Warda P.: Programowe odtwarzanie dynamicznych wielkości wejściowych czujników z wyjściem częstotliwościowym, Pomiary, Automatyka, Robotyka, nr 7-8/ 2004, s. 79-84.
- [5] Świsulski D.: Koncepcja cyfrowego przetwornika napięcieczęstotliwość, Pomiary Automatyka Kontrola 4/2007, s. 91-93.
- [6] Warda P.: Analiza dokładnościowa toru pomiarowego rejestratora wejściowych wielkości fizycznych z czujników pomiarowych z wyjściem częstotliwościowym, Pomiary Automatyka Kontrola 9 bis/ 2006, s. 113-115.
- [7] Warda P.: Programowe odtwarzanie dynamicznych wielkości wejściowych czujników z wyjściem częstotliwościowym. 2008, 134s. Rozprawa doktorska (19.03.2008), Politechnika Lubelska, Wydział Elektrotechniki i Informatyki.
- [8] Warda P.: Wpływ parametrów sygnału wyjściowego konwertera "wielkość fizyczna-częstotliwość" na dokładność przetwarzania dynamicznie zmieniającej się wielkości wejściowej, Metrologia dziś i jutro, Politechnika Gdańska, Wydział Elektrotechniki i Automatyki, 2009, s. 87-95.

otrzymano / received: 24.08.2011 przyjęto do druku / accepted: 03.10.2011

artykuł recenzowany