Identyfikatory
Warianty tytułu
Registration methods for infrared and vision images representing dynamically changing scene
Języki publikacji
Abstrakty
W artykule przedstawiono fragment wyników badań dotyczących wyboru metody dopasowania obrazów dla potrzeb ich dalszej fuzji. Poszukiwano metody pozwalającej na efektywne dopasowanie obrazów wizyjnych i termowizyjnych przedstawiających scenę o strukturze zmieniającej się w czasie. Ocenę jakości dopasowania przeprowadzono z zastosowaniem wybranych metryk jakościowych. Porównywano ze sobą różne metody. Wyniki oceny wskazują, że algorytmem dopasowania prowadzącym do uzyskania obrazu po fuzji o najlepszej jakości jest algorytm wykorzystujący mapy gradientów.
In the paper the part of studies connected with search of an optimal image registration method suitable for further image fusion purposes is presented. The search was made for an infrared and visible light acquired image. Thermograms were taken by cameras working in mid (outdoor scene) and long infrared (welding arc). Degradation between images was connected mainly with translation between camera optical axes. Three registration methods were taken into consideration. They were based on cross correlation, maximization of mutual information as well as intensity and edge orientation information. Each method was used to register images from two sets. The aligned images were next aggregated with the multiscale discrete wavelet method. The registration quality was measured with objective quality metrics such as the root mean square error (RMSE), the peak signal to noise ratio (PSNR) and the universal image quality index (Q). The used metrics allow the comparison between the benchmark images registered manually and the considered images. The analysis of the obtained results leads to the statement that among the tested methods the one using simultaneously the area and feature information generates the best registration parameters. On the other hand, the practical usage of image fusion is strongly connected with amount of the time consumed for registration. Thus, the preregistration and assumption that only transitional differences between images are present influence the capability of each method applicability.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1134--1137
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wzor
Twórcy
autor
autor
- Politechnika Śląska, Wydział Mechaniczny Technologiczny, Katedra Podstaw Konstrukcji Maszyn, ul. Konarskiego 18a, 44-100 Gliwice, wojciech.jamrozik@polsl.pl
Bibliografia
- [1] Goshtasby A., Nikolov S., Image fusion: Advances in the state of the art, Information Fusion, Volume 8, Issue 2, Special Issue on Image Fusion: Advances in the State of the Art, April 2007.
- [2] Rockinger, O., 1997: Image Sequence Fusion Using a Shift Invariant Wavelet Transform, Proceedings of the International Conference on Image Processing.
- [3] Lee J. H. and Kim Y. S. and Lee D. and Kang D. G. and Ra J. B., 2010: Robust CCD and IR Image Registration Using Gradient-Based Statistical Information, Signal Processing Letters, IEEE , vol. 17, no. 4, pp. 347-350.
- [4] Irani M. and Anandan P., 1998: Robust multi-sensor image alignment, in Proc. Int. Conf. Computer Vision, pp. 959-966.
- [5] Kim Y. S. and Lee J. H. and Ra J. B., 2008: Multi-sensor image registration based on intensity and edge orientation information, Pattern Recognition, vol. 41, pp. 3356-3365.
- [6] Zitová B., Flusser J.: Image registration methods: a survey. Image and Vision Computing, vol. 21 (2003), 977-1000.
- [7] Heather J. P., Smith M. I.: Multimodal Image Registration with Applications to Image Fusion. 7th International Conference on Information Fusion, vol. 1 (2005).
- [8] Wang Z. and Bovik A. C.: A universal image quality index, IEEE Signal Processing Letters, Vol: 9, No. 3, March 2002.
- [9] Pluim J. P. W., Maintz J. B. A., Viergever M. A.: Mutual-information-based registration of medical images: a survey, Medical Imaging, IEEE Transactions on , vol. 22, no. 8, pp. 986-1004, Aug. 2003.
- [10] Li S. T., Wang Y. N., 2000: Multisensor image fusion using discrete multiwavelet transform, Proceedings of the 3rd International Conference on Visual Computing, Mexico City, Mexico.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0106-0009