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Abstract 
 

In this paper a multi-path routing algorithm dedicated to Network on Chip 

(NoC) together with its implementation is presented. The proposed 
algorithm is based on the Ford-Fulkerson method and is aimed at data-

dominated multimedia applications realized in Multi Processor Systems  

on Chip. The efficiency of the proposed technique is compared with the 
state-of-the-art NoC routing. Our implementation utilizing virtual channels 

allows us to obtain promising results in some popular multimedia codecs. 
 
Keywords: Network on Chip, multi-path routing, Ford-Fulkerson method. 
 

Routing wielościeżkowy w sieciach  
wewnątrzukładowych dla algorytmów 
zdominowanych przez dane 

 

Streszczenie 

 

W artykule został przedstawiony wielościeżkowy routing przeznaczony do 
sieci wewnątrzukładowych (ang. Network on Chip, NoC) wraz z jego 

implementacją. Proponowany algorytm został oparty na metodzie Forda-

Fulkersona i jest przeznaczony do multimedialnych aplikacji 
strumieniowych zdominowanych przez dane, realizowanych w wielo-

procesorowych systemach jednoukładowych (ang. Multi Processor 

Systems on Chip, MPSoC). Efektywność prezentowanej techniki została 
porównana z najpopularniejszym algorytmem routingu używanym w NoC 

- XY. Badania eksperymentalne wykazały, że w niektórych przypadkach 

uzyskano znaczącą poprawę czasu transmisji. Przedstawiona 
implementacja algorytmu wykorzystuje kanały wirtualne i, chociaż 

wymaga wykonania dodatkowych obliczeń, umożliwiła otrzymanie 

obiecujących wyników dla niektórych popularnych kodeków Multi-
medialnych, natomiast dla innych uzyskano nieco gorsze wyniki. Stąd 

trudno jednoznacznie wnioskować o wyższości wielościeżkowych 

mechanizmów routingu nad tradycyjnymi jednościeżkowymi. Routing 
typu tapeworm należy zatem postrzegać jako alternatywną propozycję 

routingu przeznaczoną dla strumieniowych algorytmów realizowanych  

w NoC, która poszerza przestrzeń poszukiwań korzystnej realizacji 
układowej. W niektórych przypadkach jej stosowanie znacznie polepsza 

wyniki, czasami zaś lepiej zastosować tradycyjne podejście. W chwili 

obecnej autorzy nie są w stanie zidentyfikować cech wspólnych 
algorytmów, które są korzystnie realizowalne z wykorzystaniem 

proponowanej techniki. 
 
Słowa kluczowe: Sieci wewnątrzukładowe, trasowanie wielościeżkowe, 
metoda Forda-Fulkersona. 
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1. Introduction 
 

Contemporary multimedia algorithms, such as MPEG-4, DAB, 

DVB, MP3 and many others, are typically computational-intensive 

and data-dominated but they can be split into stages to be 

implemented in separate computational units. Thanks to this 

property, they can benefit from parallel and distributed processing 

working in a pipeline-like way and transmitting streams of relatively 

large, but usually fixed, amount of data. In these applications it is 

usually required to keep an assumed quality level of service and 

meet real-time constraints [12]. Multi Processor Systems on Chips 

(MPSoCs) are often considered as suitable hardware 

implementations of these applications [9]. As each processing unit 

of a MPSoC can realize a single stage of streaming application 

processing, it is still problematic to connect these units together.  

The most popular routing algorithm used in NoCs, named XY, 

can be also viewed as inappropriate for switching large streams of 

information. According to this algorithm, a flit is firstly routed 

according to the X axis as long as the X coordinate is not equal to 

the X coordinate of the destination core, and then it is routed 

vertically. Despite being deadlock-free [10], this algorithm is not 

adaptive and thus is not equipped with mechanism for decreasing 

the contention level.  

Moreover, as it was shown in [6], in a mesh-based NoC 

realizing a typical streaming multimedia algorithm, few links are 

used significantly while the remaining ones are utilized in a small 

degree and relatively large part of links are not utilized at all.  

Taking into consideration the above mentioned facts, it follows 

that in order to design a NoC-based MPSoC for multimedia 

streaming applications, it is necessary to propose a routing 

algorithm that is more suitable to this task that the traditional XY 

algorithm and to propose a mapping scheme of IP cores into mesh 

nodes that decreases the contention level. In this paper, we focus 

on the first of these issues. 

 

2. Tapeworm Routing 
 

In order to avoid the majority of problems found in a usage of 

the XY algorithm for streaming multimedia applications, we 

introduced a multi-path routing scheme that we named Tapeworm 

routing. We propose this name due to the similarity with the 

anatomy of a tapeworm - both its body and a package body are 

split into segments; segments are comprised of a number of flits. 

The Tapeworm algorithm uses the well-known Ford-Fulkerson 

[7] method to compute maximal throughput of the network 

between a set of cores and for each core permutation. The Ford-

Fulkerson method for an arbitrary flow network G = (V,E); where 

V is a set of vertices and E is a set of edges with source s and sink 

t. Each edge has capacity c(u,v) and flow f(u,v), denotes the notion 

of the residual network and augmenting path (u, v). The residual 

network for ow network G is network Gf = (V, Ef ); where Ef is 

defined as follows: Ef ={f(u,v)V×V : cf (u, v) > 0}, where cf(u, v) 
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denotes the residual capacity for path (u, v) which is defined with 

cf(u,v) = c(u,v) - f(u,v): The augmenting path for a network is any 

path from s to t in a residual network for G. The residual capacity 

for any augmenting path for network is determined with the 

following formula: cf(p) = min{cf(u,v):(u,v)p}.  

With the notions defined as above, we can present the Ford-

Fulkerson method in a pseudo-code given in Fig. 1. In case of the 

Tapeworm algorithm, the input data is a list of data transfers. A 

transfer Ti  consists of three elements (Si, Di, Ai), where Si and Di 

denote the source and the target router, respectively, and Ai is a 

number of bits transmitted between these routers. The pseudo code 

of the whole Tapeworm algorithm is presented in Fig. 2. 

 

1. while any augmenting path exists pGf 

2.   for each (u,v)p do 

3.     f(u,v):=f(u,v)+cf(p) 

4.     f(v,u):=f(v,u)-cf(p) 

 

Fig. 1.  Ford-Fulkerson algorithm 

Rys. 1.  Algorytm Forda-Fulkersona 

 
1. for a given permutation p 

2. Max = i Ai 

3. Min = 0 

4. while (Max > Min) 

5.   create flow network G for the appropriate NoC 

6.     for each transfer i 

7.       find all paths Pj between Si and Di 

8.       sort Pj with respect to the paths length 

9.       sort the paths in Pj of equal lengths 

         according to XY rule 

10.      determine minimal flow cmin utilizing  

         the Ford-Fulkerson method 

11.        Ai = Ai - cmin 

12.        if (Ai > 0) 

13.          Max = Average(Min, Max) - 1 

14.        else 

15.          Min = Average(Min, Max) + 1 

 

Fig. 2.  Pseudo-code of the proposed algorithm for transfer balancing 

Rys. 2.  Pseudo-kod proponowanego algorytmu do wyrównywania transferów 

 

Each router owns a routing table that stores all the paths to the 

target router sorted according to their lengths; paths of the same 

length are sorted with the XY rule. Following this rule, the first 

path is obtained based on the XY routing algorithm. In the second 

path, the flit is routed horizontally as long as the X coordinate is 

lower (or higher, according to the direction in X between the 

source and the target nodes) by 1 from the target router. Then the 

flit is routed vertically by one router, and then according to the 

XY algorithm. In the next path, a flit is routed horizontally as long 

as the X coordinate is lower (or higher) by 2 of the target router, 

etc. This approach guarantees receiving the flits in the same order 

as they were sent [5].  

The Tapeworm and the XY algorithms include some common 

properties as, for example, dealing with deadlocks by limiting the 

possibility of flit turning [2] and by utilizing the wormhole type of 

switching. The difference between these algorithms is clearly 

visible in the number of paths used to transmit data between two 

routers. It consists of 4 functional blocks. Buffers N, S, E, W 

receive data from their neighbouring routers. Buffer L receives 

data from the directly connected core. In the scheme there is no 

output buffers as the Tapeworm algorithm operates according to 

the Wormhole switching technique that permits to buffer flits of  

a single package in a few routers at once, such that the routed flits 

can be immediately transferred into input buffers of the next 

router. Data from buffers is then transferred to a switch which 

implements the Tapeworm algorithm. Moreover, the switch 

controls the flit flow in the router, reserving inputs for the 

corresponding outputs and works also as an arbiter. 

In the description there are no included, for simplification, 

virtualrec, virtualsend and input-enabled ports. These ports are  

a part of the virtual channel mechanism. The virtual channel is  

a pair of buffers in one physical channel which is shared with 

other such pairs. An access to a physical channel is controlled by  

a dedicated arbiter. Its introduction is aimed at getting rid of the 

deadlocks. This mechanism can be also used for decreasing the 

delay in a network and for increasing its capacity [4]. Using 

virtual channels in the presented router is indispensable for 

implementing the Tapeworm algorithm. Tapeworm utilizes the 

Ford-Fulkerson method [7] to determine paths that can have 

common edges for various messages and thus can send flits 

originated from various messages using the same channels at the 

same time. In the described router architecture it is possible to 

realize up to 3 virtual channels for each physical channel, which 

was enough for the analysed algorithm. However, this approach is 

scalable and the maximum number of virtual channels can be 

easily increased. The switch block is the most complex router 

block considering its implementation that consists of executing 

Tapeworm, which computes paths for transferring messages 

between the source and the destination router. Based on these 

paths, it creates the routing table for sending messages.  

The first column denotes the physical channel from which the 

data has been obtained. The second column denotes the number of 

the target router. (The routers are numbered from left to right and 

from bottom to top of a network, i.e., in case of 3x3 network, the 

first router is placed in bottom-left corner. The 2nd router is its 

right neighbour, whereas the 4th router is placed above the 1st 

one.) The third column informs about the virtual channel of  

a given physical channel to be used for input data routing. The 

fourth column contains the maximum number of bits that can be 

sent using the virtual channel, whereas the last column contains 

the number of bits sent by this channel. It is worth commenting on 

the situation when the data from an input channel and a target 

router has to be routed to more than one virtual channel. Then the 

arbiter iterates through virtual channels and assigns the first free 

one. If there is no free router, then it assigns the channel whose 

queue is the shortest and which is not in the unused state. After 

creating the routing table, a switch iterates through each virtual 

channel for every physical channel checking if a header flit, 

denoting the beginning of a new message, has appeared. If this 

happens, based on the routing table an output is assigned. Then the 

switch controls flit flow. 

 

3. Experimental results 
 

The router architecture has been developed and implemented in 

CoCentric System Studio - a design and simulation environment 

allowing us to use the SystemC language. In order to compare 

both the Tapeworm and XY routing algorithms,we performed one 

default mapping of functionalities into cores. Only in case of the 

MP3 codec we checked 5 different mappings of functionalities 

into cores for the Tapeworm routing. In our research we have 

analysed 3 different codecs: iLBC [1], MP3 [3], and H.264 [11] 

for generating traffic in a network. From each of these codecs we 

have singled out functional blocks to be implemented in separate 

cores. For example, the flow graph for MP3 is shown in Fig. 3. 

(Notice that it contains 7 functional blocks so 2 nodes in a 3x3 

mesh NoC remain unassigned). Each core (C1-C7) corresponding 

to particular functionalities has generated randomly messages of 

the constant size as long as the number of sent bits has not reached 

the number of bits defined in the transfer of a particular core of the 

codec. The maximal time needed for sending and receiving data in 

the network generating traffic for the iLBC codec, in the network 

routed according to the Tapeworm routing algorithm, is more than 

38% lower comparing with the XY-based routing (Fig. 4). The 

standard deviation is over 10% and 25% lower in case of the 

Tapeworm algorithm, i.e., the traffic in the network routed 

according to this algorithm is more balanced, what should result 

also in lower power dissipation [2]. However, the maximal time 

needed for sending and receiving data in network generating 

traffic for the MP3 codec and using the Tapeworm algorithm is 
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higher than its is XY-routing-based counterpart, which implies 

longer time of the codec execution by about 29%. The standard 

deviation for sending and receiving data is over 7% higher, which 

shows worse traffic balance in the network. 

 

 
 

Fig. 3.  Flow graph for MP3 audio decoder (flows given in bps) 

Rys. 3.  Diagram przepływów dekodera MP3 (przepływy podano w bps) 

 

The maximal time needed for sending and receiving data 

through the network generating traffic for the H.264 codec and 

utilizing the Tapeworm routing scheme is lower than in the XY 

routing algorithm case by over 19%. In case of the Tapeworm 

algorithm, the standard deviation of sending and receiving flits is 

lower by 12% and 13%, respectively. 

 
a) 

 
 

b) 

 
 

Fig. 4.  Receiving (a) and sending (b) times for iLBC codec 

Rys. 4.  Czasy otrzymywania (a) i wysyłania w kodeku iLBC 

 
Tab. 1.  Examples of MP3 codec mappings and their communication time 

Tab. 1.  Przykłady odwzorowania kodeku MP3 i ich czasy transmisji 

 

mapping communication time [cycles] 

(C1, C2, C3, C4, C5, C6, C7, C8, C9) 30316 

(C9, C1, C2, C3, C4, C5, C6, C7, C8) 29965 

(C3, C2, C1, C6, C5, C4, C7, C8, C9) 29608 

(C1, C2, C3, C5, C4, C6, C7, C8, C9) 26419 

(C4, C2, C3, C1, C5, C6, C7, C8, C9) 30334 

 

In Tab. 1 the results of the experiments for the network 

generating traffic for the MP3 codec and various arbitrary chosen 

core mappings are given. We denote the mapping as a string of 

numbers, where position of a number denotes the router number 

and the number at this position means the core number that is 

connected to this router. For example, using mapping (C1, C2, C3, 

C5, C4, C6, C7, C8, C9) we can obtain almost 13% improvement 

in terms of the network speed than in the default mapping (C1, C2, 

C3, C4, C5, C6, C7, C8, C9), but still the network with the XY 

protocol works faster for the MP3 codec. 

 

4. Conclusion 
 

In this paper we have presented an architecture of a router 

implementing the Tapeworm routing algorithm realized in the 

SystemC language. Then, a survey on the efficiency of a Network 

on Chip using the implemented router has been given. The 

obtained results have been compared with the network realizing 

the same applications using the XY algorithm. The Tapeworm 

algorithm has been meant to result in faster networks with more 

balanced transfers [5, 6], but according to the experimental results 

it is not always better than the traditional approaches. In case of 

the iLBC encoder, the whole communication time is lower by 

more than 38% in the network with the Tapeworm routing. 

On the other hand, a Tapeworm-based implementation of the 

MP3 encoder is more than 29% slower in comparison with the 

XY-based NoC. For the H.264 video encoder, the Tapeworm 

approach is again faster by more than 19%. Thus, it is difficult to 

conclude firmly that an application of the Tapeworm algorithm 

improves the network balance, as the values of the standard 

deviations have always been lower for the faster network. In case 

of the MP3 codec there have additionally been carried out more 

experiments for various core mappings; thanks to then we have 

got almost 13% improvement comparing with the initial mapping. 

But even for this best mapping we have not obtained better 

communication time than for the XY-based network. From the 

experimental results we also conclude that the Tapeworm-routing-

based network works faster if the FFC mechanism, described 

earlier in this paper, is disabled. Switching off this mechanism 

resulted in improving the results in case of iLBC by 4%, in case of 

MP3 by 32%. Only in case of the H.264 codec this mechanism has 

resulted in tiny improvement by 0.12%. However, for each 

network this mechanism has decreased the standard deviation, 

which indicates better transfer balancing in this case. We consider 

the time needed for implementing the virtual channels and 

contention as the reason for  worse operation of the Tapeworm 

algorithm in comparison with XY.  
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