
920  PAK vol. 57, nr 8/2011

Bartosz CHOJNACKI, Piotr DZIURZAŃSKI, Tomasz MĄKA
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE,
ul. Żołnierska 49, 71-210 Szczecin

Multi-Stream Routing in Network on Chip for Data-dominated Algorithms

MsC Eng. Bartosz CHOJNACKI

He graduated from the Faculty of Computer Science &

Information Technology, West Pomeranian University

of Technology in Szczecin in 2010. Currently he is

working in an IT company in Szczecin. His research

interests include hardware implementations in

SystemC.

e-mail: bchojnacki@wi.zut.edu.pl

PhD Eng. Piotr DZIURZAŃSKI

He graduated from the Faculty of Computer Science &

Information Technology, Szczecin University of

Technology in 2000. He obtained the PhD degree

at the same Faculty in 2003. Currently he is working

at the Chair of Computer Architecture and

Telecommunication, West Pomeranian University of

Technology. His research interests include

hardware/software co-design, high-level synthesis, and

formal verification.

e-mail: pdziurzanski@wi.zut.edu.pl

Abstract

In this paper a multi-path routing algorithm dedicated to Network on Chip

(NoC) together with its implementation is presented. The proposed
algorithm is based on the Ford-Fulkerson method and is aimed at data-

dominated multimedia applications realized in Multi Processor Systems

on Chip. The efficiency of the proposed technique is compared with the
state-of-the-art NoC routing. Our implementation utilizing virtual channels

allows us to obtain promising results in some popular multimedia codecs.

Keywords: Network on Chip, multi-path routing, Ford-Fulkerson method.

Routing wielościeżkowy w sieciach
wewnątrzukładowych dla algorytmów
zdominowanych przez dane

Streszczenie

W artykule został przedstawiony wielościeżkowy routing przeznaczony do
sieci wewnątrzukładowych (ang. Network on Chip, NoC) wraz z jego

implementacją. Proponowany algorytm został oparty na metodzie Forda-

Fulkersona i jest przeznaczony do multimedialnych aplikacji
strumieniowych zdominowanych przez dane, realizowanych w wielo-

procesorowych systemach jednoukładowych (ang. Multi Processor

Systems on Chip, MPSoC). Efektywność prezentowanej techniki została
porównana z najpopularniejszym algorytmem routingu używanym w NoC

- XY. Badania eksperymentalne wykazały, że w niektórych przypadkach

uzyskano znaczącą poprawę czasu transmisji. Przedstawiona
implementacja algorytmu wykorzystuje kanały wirtualne i, chociaż

wymaga wykonania dodatkowych obliczeń, umożliwiła otrzymanie

obiecujących wyników dla niektórych popularnych kodeków Multi-
medialnych, natomiast dla innych uzyskano nieco gorsze wyniki. Stąd

trudno jednoznacznie wnioskować o wyższości wielościeżkowych

mechanizmów routingu nad tradycyjnymi jednościeżkowymi. Routing
typu tapeworm należy zatem postrzegać jako alternatywną propozycję

routingu przeznaczoną dla strumieniowych algorytmów realizowanych

w NoC, która poszerza przestrzeń poszukiwań korzystnej realizacji
układowej. W niektórych przypadkach jej stosowanie znacznie polepsza

wyniki, czasami zaś lepiej zastosować tradycyjne podejście. W chwili

obecnej autorzy nie są w stanie zidentyfikować cech wspólnych
algorytmów, które są korzystnie realizowalne z wykorzystaniem

proponowanej techniki.

Słowa kluczowe: Sieci wewnątrzukładowe, trasowanie wielościeżkowe,
metoda Forda-Fulkersona.

PhD Eng. Tomasz MĄKA

He graduated from the Faculty of Computer Science &

Information Technology, Szczecin University of

Technology in 2000. He obtained the PhD degree

at the same faculty in 2005. Currently he is working

at the Chair of Computer Architecture and

Telecommunication, West Pomeranian University of

Technology. His research interests include audio and

speech signal processing and hardware signal

processing algorithms' implementations.

e-mail: tmaka@wi.zut.edu.pl

1. Introduction

Contemporary multimedia algorithms, such as MPEG-4, DAB,

DVB, MP3 and many others, are typically computational-intensive

and data-dominated but they can be split into stages to be

implemented in separate computational units. Thanks to this

property, they can benefit from parallel and distributed processing

working in a pipeline-like way and transmitting streams of relatively

large, but usually fixed, amount of data. In these applications it is

usually required to keep an assumed quality level of service and

meet real-time constraints [12]. Multi Processor Systems on Chips

(MPSoCs) are often considered as suitable hardware

implementations of these applications [9]. As each processing unit

of a MPSoC can realize a single stage of streaming application

processing, it is still problematic to connect these units together.

The most popular routing algorithm used in NoCs, named XY,

can be also viewed as inappropriate for switching large streams of

information. According to this algorithm, a flit is firstly routed

according to the X axis as long as the X coordinate is not equal to

the X coordinate of the destination core, and then it is routed

vertically. Despite being deadlock-free [10], this algorithm is not

adaptive and thus is not equipped with mechanism for decreasing

the contention level.

Moreover, as it was shown in [6], in a mesh-based NoC

realizing a typical streaming multimedia algorithm, few links are

used significantly while the remaining ones are utilized in a small

degree and relatively large part of links are not utilized at all.

Taking into consideration the above mentioned facts, it follows

that in order to design a NoC-based MPSoC for multimedia

streaming applications, it is necessary to propose a routing

algorithm that is more suitable to this task that the traditional XY

algorithm and to propose a mapping scheme of IP cores into mesh

nodes that decreases the contention level. In this paper, we focus

on the first of these issues.

2. Tapeworm Routing

In order to avoid the majority of problems found in a usage of

the XY algorithm for streaming multimedia applications, we

introduced a multi-path routing scheme that we named Tapeworm

routing. We propose this name due to the similarity with the

anatomy of a tapeworm - both its body and a package body are

split into segments; segments are comprised of a number of flits.

The Tapeworm algorithm uses the well-known Ford-Fulkerson

[7] method to compute maximal throughput of the network

between a set of cores and for each core permutation. The Ford-

Fulkerson method for an arbitrary flow network G = (V,E); where

V is a set of vertices and E is a set of edges with source s and sink

t. Each edge has capacity c(u,v) and flow f(u,v), denotes the notion

of the residual network and augmenting path (u, v). The residual

network for ow network G is network Gf = (V, Ef); where Ef is

defined as follows: Ef ={f(u,v)V×V : cf (u, v) > 0}, where cf(u, v)

PAK vol. 57, nr 8/2011  921

denotes the residual capacity for path (u, v) which is defined with

cf(u,v) = c(u,v) - f(u,v): The augmenting path for a network is any

path from s to t in a residual network for G. The residual capacity

for any augmenting path for network is determined with the

following formula: cf(p) = min{cf(u,v):(u,v)p}.

With the notions defined as above, we can present the Ford-

Fulkerson method in a pseudo-code given in Fig. 1. In case of the

Tapeworm algorithm, the input data is a list of data transfers. A

transfer Ti consists of three elements (Si, Di, Ai), where Si and Di

denote the source and the target router, respectively, and Ai is a

number of bits transmitted between these routers. The pseudo code

of the whole Tapeworm algorithm is presented in Fig. 2.

1. while any augmenting path exists pGf

2. for each (u,v)p do

3. f(u,v):=f(u,v)+cf(p)

4. f(v,u):=f(v,u)-cf(p)

Fig. 1. Ford-Fulkerson algorithm

Rys. 1. Algorytm Forda-Fulkersona

1. for a given permutation p

2. Max = i Ai

3. Min = 0

4. while (Max > Min)

5. create flow network G for the appropriate NoC

6. for each transfer i

7. find all paths Pj between Si and Di

8. sort Pj with respect to the paths length

9. sort the paths in Pj of equal lengths

 according to XY rule

10. determine minimal flow cmin utilizing

 the Ford-Fulkerson method

11. Ai = Ai - cmin

12. if (Ai > 0)

13. Max = Average(Min, Max) - 1

14. else

15. Min = Average(Min, Max) + 1

Fig. 2. Pseudo-code of the proposed algorithm for transfer balancing

Rys. 2. Pseudo-kod proponowanego algorytmu do wyrównywania transferów

Each router owns a routing table that stores all the paths to the

target router sorted according to their lengths; paths of the same

length are sorted with the XY rule. Following this rule, the first

path is obtained based on the XY routing algorithm. In the second

path, the flit is routed horizontally as long as the X coordinate is

lower (or higher, according to the direction in X between the

source and the target nodes) by 1 from the target router. Then the

flit is routed vertically by one router, and then according to the

XY algorithm. In the next path, a flit is routed horizontally as long

as the X coordinate is lower (or higher) by 2 of the target router,

etc. This approach guarantees receiving the flits in the same order

as they were sent [5].

The Tapeworm and the XY algorithms include some common

properties as, for example, dealing with deadlocks by limiting the

possibility of flit turning [2] and by utilizing the wormhole type of

switching. The difference between these algorithms is clearly

visible in the number of paths used to transmit data between two

routers. It consists of 4 functional blocks. Buffers N, S, E, W

receive data from their neighbouring routers. Buffer L receives

data from the directly connected core. In the scheme there is no

output buffers as the Tapeworm algorithm operates according to

the Wormhole switching technique that permits to buffer flits of

a single package in a few routers at once, such that the routed flits

can be immediately transferred into input buffers of the next

router. Data from buffers is then transferred to a switch which

implements the Tapeworm algorithm. Moreover, the switch

controls the flit flow in the router, reserving inputs for the

corresponding outputs and works also as an arbiter.

In the description there are no included, for simplification,

virtualrec, virtualsend and input-enabled ports. These ports are

a part of the virtual channel mechanism. The virtual channel is

a pair of buffers in one physical channel which is shared with

other such pairs. An access to a physical channel is controlled by

a dedicated arbiter. Its introduction is aimed at getting rid of the

deadlocks. This mechanism can be also used for decreasing the

delay in a network and for increasing its capacity [4]. Using

virtual channels in the presented router is indispensable for

implementing the Tapeworm algorithm. Tapeworm utilizes the

Ford-Fulkerson method [7] to determine paths that can have

common edges for various messages and thus can send flits

originated from various messages using the same channels at the

same time. In the described router architecture it is possible to

realize up to 3 virtual channels for each physical channel, which

was enough for the analysed algorithm. However, this approach is

scalable and the maximum number of virtual channels can be

easily increased. The switch block is the most complex router

block considering its implementation that consists of executing

Tapeworm, which computes paths for transferring messages

between the source and the destination router. Based on these

paths, it creates the routing table for sending messages.

The first column denotes the physical channel from which the

data has been obtained. The second column denotes the number of

the target router. (The routers are numbered from left to right and

from bottom to top of a network, i.e., in case of 3x3 network, the

first router is placed in bottom-left corner. The 2nd router is its

right neighbour, whereas the 4th router is placed above the 1st

one.) The third column informs about the virtual channel of

a given physical channel to be used for input data routing. The

fourth column contains the maximum number of bits that can be

sent using the virtual channel, whereas the last column contains

the number of bits sent by this channel. It is worth commenting on

the situation when the data from an input channel and a target

router has to be routed to more than one virtual channel. Then the

arbiter iterates through virtual channels and assigns the first free

one. If there is no free router, then it assigns the channel whose

queue is the shortest and which is not in the unused state. After

creating the routing table, a switch iterates through each virtual

channel for every physical channel checking if a header flit,

denoting the beginning of a new message, has appeared. If this

happens, based on the routing table an output is assigned. Then the

switch controls flit flow.

3. Experimental results

The router architecture has been developed and implemented in

CoCentric System Studio - a design and simulation environment

allowing us to use the SystemC language. In order to compare

both the Tapeworm and XY routing algorithms,we performed one

default mapping of functionalities into cores. Only in case of the

MP3 codec we checked 5 different mappings of functionalities

into cores for the Tapeworm routing. In our research we have

analysed 3 different codecs: iLBC [1], MP3 [3], and H.264 [11]

for generating traffic in a network. From each of these codecs we

have singled out functional blocks to be implemented in separate

cores. For example, the flow graph for MP3 is shown in Fig. 3.

(Notice that it contains 7 functional blocks so 2 nodes in a 3x3

mesh NoC remain unassigned). Each core (C1-C7) corresponding

to particular functionalities has generated randomly messages of

the constant size as long as the number of sent bits has not reached

the number of bits defined in the transfer of a particular core of the

codec. The maximal time needed for sending and receiving data in

the network generating traffic for the iLBC codec, in the network

routed according to the Tapeworm routing algorithm, is more than

38% lower comparing with the XY-based routing (Fig. 4). The

standard deviation is over 10% and 25% lower in case of the

Tapeworm algorithm, i.e., the traffic in the network routed

according to this algorithm is more balanced, what should result

also in lower power dissipation [2]. However, the maximal time

needed for sending and receiving data in network generating

traffic for the MP3 codec and using the Tapeworm algorithm is

922  PAK vol. 57, nr 8/2011

higher than its is XY-routing-based counterpart, which implies

longer time of the codec execution by about 29%. The standard

deviation for sending and receiving data is over 7% higher, which

shows worse traffic balance in the network.

Fig. 3. Flow graph for MP3 audio decoder (flows given in bps)

Rys. 3. Diagram przepływów dekodera MP3 (przepływy podano w bps)

The maximal time needed for sending and receiving data

through the network generating traffic for the H.264 codec and

utilizing the Tapeworm routing scheme is lower than in the XY

routing algorithm case by over 19%. In case of the Tapeworm

algorithm, the standard deviation of sending and receiving flits is

lower by 12% and 13%, respectively.

a)

b)

Fig. 4. Receiving (a) and sending (b) times for iLBC codec

Rys. 4. Czasy otrzymywania (a) i wysyłania w kodeku iLBC

Tab. 1. Examples of MP3 codec mappings and their communication time

Tab. 1. Przykłady odwzorowania kodeku MP3 i ich czasy transmisji

mapping communication time [cycles]

(C1, C2, C3, C4, C5, C6, C7, C8, C9) 30316

(C9, C1, C2, C3, C4, C5, C6, C7, C8) 29965

(C3, C2, C1, C6, C5, C4, C7, C8, C9) 29608

(C1, C2, C3, C5, C4, C6, C7, C8, C9) 26419

(C4, C2, C3, C1, C5, C6, C7, C8, C9) 30334

In Tab. 1 the results of the experiments for the network

generating traffic for the MP3 codec and various arbitrary chosen

core mappings are given. We denote the mapping as a string of

numbers, where position of a number denotes the router number

and the number at this position means the core number that is

connected to this router. For example, using mapping (C1, C2, C3,

C5, C4, C6, C7, C8, C9) we can obtain almost 13% improvement

in terms of the network speed than in the default mapping (C1, C2,

C3, C4, C5, C6, C7, C8, C9), but still the network with the XY

protocol works faster for the MP3 codec.

4. Conclusion

In this paper we have presented an architecture of a router

implementing the Tapeworm routing algorithm realized in the

SystemC language. Then, a survey on the efficiency of a Network

on Chip using the implemented router has been given. The

obtained results have been compared with the network realizing

the same applications using the XY algorithm. The Tapeworm

algorithm has been meant to result in faster networks with more

balanced transfers [5, 6], but according to the experimental results

it is not always better than the traditional approaches. In case of

the iLBC encoder, the whole communication time is lower by

more than 38% in the network with the Tapeworm routing.

On the other hand, a Tapeworm-based implementation of the

MP3 encoder is more than 29% slower in comparison with the

XY-based NoC. For the H.264 video encoder, the Tapeworm

approach is again faster by more than 19%. Thus, it is difficult to

conclude firmly that an application of the Tapeworm algorithm

improves the network balance, as the values of the standard

deviations have always been lower for the faster network. In case

of the MP3 codec there have additionally been carried out more

experiments for various core mappings; thanks to then we have

got almost 13% improvement comparing with the initial mapping.

But even for this best mapping we have not obtained better

communication time than for the XY-based network. From the

experimental results we also conclude that the Tapeworm-routing-

based network works faster if the FFC mechanism, described

earlier in this paper, is disabled. Switching off this mechanism

resulted in improving the results in case of iLBC by 4%, in case of

MP3 by 32%. Only in case of the H.264 codec this mechanism has

resulted in tiny improvement by 0.12%. However, for each

network this mechanism has decreased the standard deviation,

which indicates better transfer balancing in this case. We consider

the time needed for implementing the virtual channels and

contention as the reason for worse operation of the Tapeworm

algorithm in comparison with XY.

5. References

[1] Andersen S.V. et al.: iLBC - a linear predictive coder, IEEE

Workshop on Speech Coding, 2002.

[2] Bjerregaard T., Mahadevan S.: A Survey of Research and Practices of

Network-on-Chip, ACM Computing Surveys (CSUR), vol. 38, 2006,

Article 1.

[3] Brandenburg K.: MP3 and AAC Explained, 17th International

Conference: High-Quality Audio Coding, 1999.

[4] Duato J., Yalamanchili S., Ni L.: Interconnection Networks. An

Engineering Approach, Morgan Kaufmann Publishers, 2003.

[5] Dziurzanski P., Maka T.: Stream-based Multi-path Routing Scheme in

On-chip Networks, 16th EUROMICRO Conference on Parallel,

Distributed and Network-based Processing PDP, 13-15 February,

Toulouse, France, ss. 15-16, 2008.

[6] Dziurzanski P., Maka T.: Stream Transfer Balancing Scheme Utilizing

Multi-Path Routing in Networks on Chip, 4th International Workshop

ARC 2008, 26-28 March, London, UK, ss. 294-299, 2008.

[7] Ford L.R., Jr. and Fulkerson D.R.: Flows in Networks. Princeton

University Press, Princeton, NJ, 1962.

[8] Greenberg H. J.: Ford-Fulkerson Max Flow Labeling Algorithm,

University of Colorado, at Denver, 1998.

[9] Kavaldjiev N. et al.: Routing of guaranteed throughput traffic in

a network-on-chip, Technical Report TR CTIT-05-42 Centre for

Telematics and Information Technology, University of Twente,

Enschede, 2005.

[10] Li M., Zeng Q.A., Jone W. B.: DyXY: a proximity congestion-aware

deadlock-free dynamic routing method for network on chip. 43rd

ACM IEEE Design Automation Conference (DAC), 2006, pp. 849-852.

[11] Richardson I. E. G.: H.264 and MPEG-4 Video Compression: Video

Coding for Next Generation Multimedia, Wiley, 2003.

[12] Smit G. J. M., et al.: Efficient Architectures for Streaming DSP

Applications, Dynamically Reconfigurable Architectures,

Internationales Begegnungs- und Forschungszentrum fuer Informatik

(IBFI), Schloss Dagstuhl, Germany, 2006.

otrzymano / received: 13.05.2011

przyjęto do druku / accepted: 04.07.2011 artykuł recenzowany

