Identyfikatory
Warianty tytułu
Implementation of reversible circuits in semiconductor technologies
Języki publikacji
Abstrakty
Dziedzina syntezy odwracalnych układów logicznych jest rozwijana bardzo intensywnie. Zaproponowane zostały nawet konstrukcje układów odwracalnych z klasycznych elementów półprzewodnikowych. Wykazują one szereg zalet, m.in. mogą być stosowane jako układy o bardzo małym poborze mocy lub są w stanie realizować pewne klasy algorytmów obliczeń kwantowych. W poniższym referacie przedstawiamy przegląd rozwiązań realizacji układów odwracalnych z wykorzystywaniem klasycznych elementów półprzewodnikowych.
Synthesis of reversible functions (i.e. bijective mappings) is an emerging research area. It is mainly motivated by advances in quantum computing and application of reversible circuits to quantum computing. However, some research has also been done in the area of implementation of reversible circuits in classic semiconductor technologies. Such circuits, built mainly from CMOS transistors, reveal their advantages. They can be successfully applied to the area of low power design. Recently, more attention has also been given to such circuits as they can also be used to implement some classes of quantum algorithms and take the advantage of quantum computing to stretch the limits of the classical computation paradigms. This paper gives an overview of the present advances in the field of reversible circuits built in semiconductor technologies. It describes reversible circuits built from CMOS transistor based switching networks and principles of adiabatic circuits. The last part of the paper presents the foundation of quantum computatiosn that can be realized by reversible circuits with asynchronous feedback.
Wydawca
Czasopismo
Rocznik
Tom
Strony
911--913
Opis fizyczny
Bibliogr. 30 poz., rys., schem., wzor
Twórcy
autor
autor
- Politechnika Warszawska, Wydział Elektroniki, Instytut Informatyki, ul. Nowowiejska 15/19, 00-665 Warszawa, M.Szyprowski@ii.pw.edu.pl
Bibliografia
- [1] Landauer R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, vol. 3, 1961, pp. 183-191.
- [2] Bennett C. H.: Logical reversibility of computation. IBM Journal of Research and Development, vol. 17, 1973, pp. 525-532.
- [3] De Vos A.: Reversible Computing. Fundamentals, Quantum Computing and Applications. Wiley-VCH, Berlin 2010.
- [4] Feynman R.: Quantum mechanical computers. Optics News, vol. 11, 1985, pp. 11-20.
- [5] Cuykendall R., Andersen D. R.: Reversible optical computing circuits. Optics Letters, vol.12, 1987, pp. 542-544.
- [6] Merkle R. C.: Reversible electronic logic using switches. Nanotechnology, Vol. 4, 1993, pp. 21-40.
- [7] Bandyopadhyay S.: Nanoelectronic implementations of reversi-ble and quantum logic. Superlattices and Microstructures, vol. 23, 1998, pp. 445-464.
- [8] Forsberg E.: Reversible logic based on electron waveguide Y-branch switches. Nanotechnology, vol. 15, 2004, pp. 298-302.
- [9] Wood H. and Chen D. J.: Fredkin gate circuits via recombination enzymes. Proceedings of the IEEE Congress on Evolutionary Computation, June 2004.
- [10] Quantum Information Science and Technology Roadmap, version 2.0. Los Alamos National Laboratory, April 2, 2004, http://qist.lanl.gov.
- [11] Vieri C. J., Pendulum: A reversible computer architecture. M. S. Thesis, Massachusetts Institute of Technology, Cambridge, MA 1995.
- [12] Frank M. P.: Reversibility for efficient computing. Ph. D. Thesis, Massachussets Institute of Technology, Cambridge, MA, USA, 1999.
- [13] Kim S., Kwon J. H., Chae S. I.: An 8-b nRERL microprocessor for ultra-low-energy applications. Proc. Asia and South Pacific Design Automation Conf., 2001, pp. 27-28.
- [14] Kim S., Ziesler C. H., Papaefthymoniou M. C.: Charge-recovery computing on silicon. IEEE Trans. on Comp., vol. 54, no. 6, 2005, pp. 659-659.
- [15] Desoete B., De Vos A., Sibiński M., Widerski T.: Feynman’s reversible logic gates implemented in silicon. Proc. 6th Int. Conf. MIXDES, Cracow, Poland, June 1999, pp. 497-502.
- [16] Van Rentergem Y., De Vos A.: Optimal design of a reversible full adder, Int. Journal of Unconventional Computing, vol. 1, 2005, pp. 339-355.
- [17] Van Rentergem Y., De Vos A.: Reversible full adders applying Fredkin gates, Proc. 12th Int. Conf. MIXDES, Kraków, Poland, June 2005, pp. 179-184.
- [18] Skoneczny M., Van Rentergem Y., De Vos A.: Reversible Fourier transform chip, Proc. 15th Int. Conf. MIXDES, Poznań, Poland, June 2008, pp. 281-286.
- [19] De Vos A.: Reversible computer hardware, Electronic Notes in Theoretical Computer Science, vol. 253, 2010, pp. 17-22.
- [20] Axelsen H. B., Glück R., De Vos A., Thomsen M. K.: MicroPower: Towards low-power microprocessors with reversible computing. http://ercim-news.ercim.eu/en79/special-theme/micropower-towards-low-power-microprocessors-with-reversible-computing, 2010.
- [21] Kerntopf P.: Synteza odwracalnych układów logicznych. Pomiary Automatyka Kontrola, vol. 53, nr 7, 2007, pp. 78-80.
- [22] Wille R., Drechsler R.: Towards a Design Flow for Reversible Logic. Springer, Dordrecht 2010.
- [23] De Vos A., Van Rentergem Y.: Networks for reversible logic. Proc. 8th Int. Workshop on Boolean Problems, Freiberg, Germany, Sept. 2008, pp. 41-47.
- [24] De Vos A., Desoete B., Adamski A., Pietrzak P., Sibiński M., Widerski T.: Design of reversible logic circuits by means of control gates. Proc. 10th Int. Workshop on Power and Timing Modeling, Optimization and Simulation, Goettingen, Germany, Sept. 2000, pp. 255-264.
- [25] De Vos A.: Proposal for an implementation of reversible gates in c-MOS. Int. Journal of Electronics, vol. 76, 1994, pp. 293-302.
- [26] De Vos A.: A 12-transistor c-MOS building-block for reversible computers. Int. Journal of Electronics, vol. 79, 1995, pp. 171-182.
- [27] Khandekar P. D., Subbaraman S., Chitre A. V.: Implementation and analysis of quasi-adiabatic inverters. Proc. Int. MultiConf. of Engineers and Computer Scientists, Hong-Kong, March 17-19, 2010.
- [28] De Vos A. and Van Rentergem Y.: Energy dissipation in reversible logic addressed by a ramp voltage, Proc. 15th Int. Workshop on Power and Timing Modeling, Optimization and Simulation, Leuven, Sept. 2005, pp. 207-216.
- [29] Grover L.: A fast quantum mechanical algorithm for database search. Proc. ACM Symp. on Theory of Computing, 1996, pp. 212-219.
- [30] Hamel J. S.: A thermodynamic Turing machine: Artificial molecular computing using classical reversible logic switching networks (1). arXiv: 0904.3273v2, 14 May 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0104-0030