
896 PAK vol. 57, nr 8/2011

Przemysław MAZUREK
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, KATEDRA PRZETWARZANIA SYGNAŁÓW I INŻYNIERII MULTIMEDIALNEJ
26. Kwietnia 10, 71-126, Szczecin

Circle parameters estimation using Hough transform
implemented on GPGPU

Dr eng. Przemysław MAZUREK

Assistant professor in the Department of Signal

Processing and Multimedia Engineering at the Faculty

of Electrical Engineering, West-Pomeranian University

of Technology, Szczecin. Author of more then 100

papers related to the digital signal processing, estimation

of object kinematics, biosignals acquisition and

processing.

e-mail: przemyslaw.mazurek@zut.edu.pl

Abstract

In the paper implementation of the Hough transform using NVidia CUDA
platform is considered. The GPGPU implementation is based on

processing in parallel a set of Hough transforms with synchronized

memory accesses for better utilization of the texture cache. The best code
variant is based on quadrature sine and cosine functions, an unrolled loop

and a single write to the global memory. The processing time is about

1000 shorter in comparison to the Matlab code, which is necessary for
processing the video data.

Keywords: estimation, pattern recognition, Hough transform, GPGPU.

Estymacja parametrów okręgu
z wykorzystaniem transformaty Hougha
dla GPGPU

Streszczenie

W artykule rozpatruje się implementację transformaty Hougha [1] dla

okręgów (1). Celem implementacji jest skrócenia czasu przetwarzania
wielu obrazów o dużej rozdzielczości na potrzeby estymacji położenia

i promienia półsferycznego próbnika oświetlenia stosowanego [3] podczas

pomiarów światła na potrzeby realistycznej grafiki i animacji
komputerowej (rys. 1). Kolorowy obraz przetwarzany jest za pomocą

algorytmu [2] (rys. 3), a w celu redukcji czasu przetwarzania

skoncentrowano się na wykorzystaniu platformy NVidia CUDA 3.2 [5, 6]
do równoległej realizacji transformaty Hougha [7-12]. Wykorzystano

oryginalną konfigurację bloków wątków oraz siatki w celu efektywnego

wykorzystania pamięci podręcznej tekstur przy równoległym próbkowaniu
obrazu. W implementacji 32 wątki bloku wykonują transformatę Hougha

pobierając wartości obrazu z pierścienia w sposób synchroniczny w celu

optymalizacji wykorzystania pamięci tekstur. Porównano 14 metod
wyznaczania (tab. 1) próbkowanego piksela. Porównano metodę zapisu

wyniku najlepszego dla bloku z wykorzystaniem jednego i wszystkich
wątków. Najbardziej efektywnym rozwiązaniem jest wykorzystanie

funkcji kwadraturowej wraz z rozwijaniem pętli i pojedynczym zapisem.

Dla procesora G80 (Geforce 8800 GTS) uzyskano 1000-krotne
przyspieszenie obliczeń w stosunku do kodu w Matlabie wykonywanego

na procesorze Pentium 4 (2.4GHz). Dla 32 sąsiednich promieni i 100

próbek każdego okręgu czas przetwarzania jest rzędu 1 sekundy.

Słowa kluczowe: Estymacja, Rozpoznawanie obrazów, Transformata
Hougha, GPGPU.

1. Introduction

Estimation of low-level geometrical objects like points, lines,

and circles is very important for machine vision applications.

Proper detection and estimation of object parameters is useful for

mid-level and high-level scene understanding. Fast and reliable

low-level algorithms reduce complexity and computation costs of

higher level processing.

Estimation of the position and orientation of lines located in an

image is possible with use of the Hough transform. This transform

accumulates pixel values over all possible line orientations [1].

Such accumulation approach is optimal and computationally

demanding. Similar accumulation technique is applied to the other

shapes so any curve (closed or not) can be also processed. One of

the most important curves is the circle and estimation of the

position and radius of multiple circles is necessary in numerous

applications.

The estimation of light probe parameters is important for light

measurement and considered in [2]. The light probe is located in a

selected point of the 3D space and the reflected light is obtained

using the light probe [3]. Hemispherical or spherical mirrors are

used for such purposes.

Rys. 1. Przykładowy obraz z próbnikiem oświetlenia wyposażonym w kołnierz

Fig. 1. Example image of a flange-based light probe

The reflected image is extracted from the image frame manually

due to lack of available information about placement of the light

probe. It is especially difficult if the background and the reflected

images are similar and solid (like clear sky), or if there are a lot of

small and similar objects (like leaves in a forest scene).

The light probe extracted image is transformed to the spherical

coordinates and used in computer graphics software for light

simulation. This technique gives ability of the correct lighting of

virtual objects placed in a real scene.

This technique is simple for a static object. Camera or virtual

object (and corresponding light probe device) movements need

extractions of the reflected image from every frame, which is a

time consuming task for a human. Automatic technique is

necessary and the flange based light probe is introduced in [2].

The chroma keying and edge detection techniques are used

together for the image enhancement, especially two circles of the

flange (inner and outer). The Hough transform is applied to

estimation of the circle position and radius using the enhanced

image shown in Fig. 2.

The computation cost of the Hough transform is very high due

to the nonlinear relation between following pixels of the circle

during successive accumulation. Matlab based computations are

very expensive and the single frame is processed for about 16

minutes (512x512 pixels, 32 radiuses, 100 points of the circle are

accumulated) using Pentium 4 at 2.4GHz. High resolution frames

(2k or 4k) are used in a digital cinema so computation costs are

unrealistic.

One of the optimization methods is parallel processing using

GPGPU (General Purpose Graphics Processing Unit). The NVidia

CUDA processing platform is very interesting because the code is

written using the C language.

PAK vol. 57, nr 8/2011 897

Rys. 2. Obraz po przetworzeniu metodą z artykułu [2]

Fig. 2. Enhanced image after application of the algorithm proposed in the paper [2]

2. Hough transform for circles

The Hough transform accumulates values for every circle [1, 4].

The input image is 2D space and the Hough transform output is

3D space in a general form. Two dimensions of the result are

related to the position (x,y) and correspond to the input image. The

third dimension is related to the variable radius.

i

ii ryrxIryxH cos,sin),,((1)

where:

I – image,

x,y – circle centre,

r – radius,

i – particular angle,

 – angle.

Such formulation of the Hough transform (1) allows

accumulation by testing a selected set of points located on the

circle. Image pixels are used directly if the position rounding is

applied and for small distances between neighborhood pixels the

same value is used (accumulated) multiple times. Bilinear

interpolation for images allows accumulation of the more correct

values. Bilinear interpolation is supported by the CUDA supported

GPGPUs but only for the float (32-bits per pixel) image data

representation [5, 6]. This is a serious disadvantage because

unsigned byte (unsigned char: 8-bits per pixels) is more important

for reduction of the main bottleneck of the GPGPUs – the memory

transfers between GPGPU and memory [5, 6]. In this

implementation the byte based representation of the pixel is used.

The image enhancement algorithm [2] uses a color (RGB) image

and returns single byte per pixel that is depicted as a grayscale

image (Fig. 2).

The fixed number of pixels used in computations support the

comparison possibility of the circles with different radiuses.

The Hough transform maximum value (2) for a set of radiuses

allows estimation of the position and is depicted in Fig. 3.

),,(max),(max ryxHyxH
r

 (2)

Additional image normalization is shown in Fig.3. The brightest

area in the image corresponds to the best detected circle position.

There are a lot of implementation possibilities of the Hough

transform [7-12] using in parallel processing. Theoretical

approaches are very important but implementation details, and

especially a processing platform, influence the computation time

significantly. The most important for particular application (light

probe tracking) is the processing time reduction to the more

realistic value for the fluent workflow. Assuming 24 frames per

second and 60 seconds of the footage, the Matlab implementation

needs 16 days of processing, which is not acceptable.

Rys. 3. Reprezentacja transformaty Hougha dla maksymalnej wartości

Fig. 3. Hough transform results for the maximum value

3. CUDA implementation

The direct implementation of formula (1) is used in the

considered implementation. The cost of computations of sine and

cosine functions is quite low because they are processed inside

GPGPU and there are not necessary memory accesses to the LUT

(Look-up Table). Such approach is suggested in numerous papers

and books [5, 6]. The main cost is the memory transfers between

GPGPU and global memory (outside GPGPU chip). Assuming N

accumulation points per a circle, there are X۰Y۰N۰R read and

X۰Y۰R (or X۰Y) write accesses.

Conventional CUDA image processing in parallel assumes

assignment of the single thread to the e.g. processed pixel or

matrix element but such technique is not always efficient. Two

main elements of data organization and processing are the thread

block and grid. The block joins of multiple threads for processing

the selected memory area and threads cooperation. A shared

memory is used for cooperation between threads and storage of

the result. After cooperation, the result is transferred from the

shared to the global memory. This approach is efficient but

depends on numerous factors, especially on the algorithm and data

representation. The grid is used for organization of multiple blocks

for complete data processing. The block size defines also number

of concurrent blocks processed by the available hardware. Blocks

are processed in order defined by the CUDA scheduler that is not

controlled by the programmer.

Blocks and grid are virtual concept in CUDA and are not

related to the data organization. It is possible to use them more

freely and reduce processing time or implementation cost.

In this paper a non-standard block and grid assignment is used.

Single thread blocks (32x1 size) process 32 radiuses. Every thread

is assigned to the different radius. The grid is extended in one

dimension 32 times (width). Calculation of the proper 2D position

in the image is obtained by the arithmetic shift right (>>5

operation) of the horizontal position of the thread.

Thread blocks process input data organized into a ring. Input

data are located in the texture memory intentionally. The shared

memory is fast but needs more complicated accesses in

comparison to the texture memory. The texture memory is cached,

which is used in this implementation. Ring accesses start

synchronously for all 32 threads in block and the same angles are

processed in parallel. This approach improves a hit ratio in the

texture cache memory and the number of accesses to the slow

global memory is reduced.

Every circle is sampled by the fixed number of points. Dense

sampling allows better estimation of the Hough transform and

sparse sampling reduces the computation cost. Dense sampling is

important for the result quality. The computation cost is low due

898 PAK vol. 57, nr 8/2011

to texture cache even if the same pixel is used in dense sampling

approach. CUDA supports bilinear interpolation but not for

desired 8-bit data per pixel representation, unfortunately.

The accumulated results are compared in parallel by the threads

and the largest one is returned. Corresponding radius for the

maximal fitness of the circle in the image at some position can be

returned also. Such formulation reduces the number of output data

to the global memory.

The position estimated by the Hough transform is used directly

or as a starting point for a more precise second estimation step.

Next, the Hough transform or another algorithm can be applied.

4. Performance

A set of performance tests for Nvidia G80 GPU (Geforce 8800

GTS, 128 stream processors, 650 MHz core clock, 1625 MHz

shader clock, 1944 MHz memory data rate, 256-bit memory

interface, PCI Express x16) were prepared. The input image has

512x512 size. The algorithm has fixed computation cost and does

not depend on the image content.

The processing time does not depend significantly on the radius

and the processing cost is almost a linear function of the number

of circle samples (Fig. 4) for the best solution (No. 7).

Many optimization techniques are tested for calculation of

formula (1) inside the loop (Tab.1). The ‘i' is the loop control

variable, ‘x0’ and ‘y0’ are positions of the circle centre, alpha is

the constant used for successive sampling of the circle, ‘R’ is the

variable radius dependent on the assigned thread.

Tab. 1. Computation cost for radiuses 100-132 and 512x512 image

Tab. 1. Koszt obliczeniowy dla promieni 100-132 i obrazu 512x512 pikseli

No.

Part of kernel code responsible for

calculation of the circle points

coordinates

Processing time

[s]

(loop)

Processing time

[s]

(unrolled loop)

1

x = x0 + R*__sinf(angle);

y = y0 + R*__cosf(angle);

angle += alpha;

2.4 0.9

2
x = x0 + R*__sinf(alpha*i);

y = y0 + R*__cosf(alpha*i);
2.6 0.9

3

x = x0 + R*sin(angle);

y = y0 + R*cos(angle);

angle += alpha;

9.1 9.1

4
x = x0 + R*sin(alpha*i);

y = y0 + R*cos(alpha*i);
9.2 9.2

5

float t=alpha*i;

x = x0 + R*sin(t);

y = y0 + R*cos(t);

9.2 9.2

6

float s1,c1;

__sincosf(alpha*i,&s1,&c1);

x = x0 + R*s1;

y = y0 + R*c1;

2.6 0.9

7

float s1,c1;

__sincosf(angle,&s1,&c1);

x = x0 + R*s1;

y = y0 + R*c1;

angle += alpha;

2.4 0.9

There are three possible implementations of sine and cosine

functions. The conventional ‘sin’ and ‘cos’ functions process data

with the high precision quality [5, 6] but the computation time is

about 9 [s]. This is quite fast in comparison to the Matlab

implementation but still far from the real-time processing and the

obtained processing time values should be rescaled for the larger

image frames and number of tested radiuses.

Two next options are ‘__sinf’, ‘__cosf’ functions or quadrature

function ‘__sincosf’. Unrolling of the loop is very important for

further processing time reduction. The processing time is about

0.908 [s] for the last (best) variant. The conventional ‘sin’ and

‘cos’ functions are very slow and even loop unroll benefits are not

visible.

All threads write the shared memory but only one thread writes

result to the global memory. If all of them write the best result, the

computation time is increased to 0.913 [s].

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

number of samples per circle

p
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

radiuses 50-82

radiuses 100-132

radiuses 150-182

Rys. 4. Czas przetwarzania zaimplementowanego algorytmu

Fig. 4. Computation time of the implemented algorithm

5. Conclusions

The GPGPU based implementation of the Hough transform is

much faster (about 1000 times) in comparison to the regular

Matlab code. Proper analyses of the code multiple variants, the

memory organization are important for time efficient results. The

proposed techniques are important not only for the Hough

transform but for other algorithms with non-linear accesses to the

memory.

The obtained implementation is a very useful tool for

processing a multiple image and initialization of light probe

tracking algorithms.

This work is supported by the UE EFRR ZPORR project Z/2.32/I/1.3.1/267/05

"Szczecin University of Technology - Research and Education Center of Modern

Multimedia Technologies" (Poland).

6. References

[1] Hough P.V.C., Arbor A: Method and Means for Recognizing

Complex Patterns, US Patent no. 3,069,654, 1962.

[2] Mazurek P.: Estimation of position of the light probe device for

photorealistic computer animation purposes, Elektronika – kon-

strukcje, technologie, zastosowania, R. LII nr1, 2011.

[3] Debevec P.: Rendering Synthetic Objects into Real Scenes: Bridging

Traditional and Image-based Graphics with Global Illumination and

High Dynamic Range Photography, SIGGRAPH 98, pp. 189-198, 1998.

[4] Demirkaya O, Asyali M.H., Sahoo P.K.: Image Processing with

MATLAB, Applications in Medicine and Biology. CRC Press, 2009.

[5] NVIDIA CUDA C Programming Guide v.3.2, NVidia, 2010.

[6] NVIDIA CUDA, CUDA C Best Practices Guide v.3.2, NVidia, 2010.

[7] Diard F.: Using the Geometry Shader for Compact and Variable-

Length GPU Feedback, in GPU Gems 3, NVidia, 2007.

[8] Guil N., Zapata E.L.: A Parallel Pipelined Hough Transform, in Euro-

Par, vol II, pp. 131-138, 1996.

[9] Ruiz A., Ujaldon M., Guil N.: Using Graphics Hardware for

Enhancing Edge and Circle Detection, in J. Marti et al. (Eds.): IbPRIA

2007, Part II, LNCS 4478, pp. 234–241, 2007.

[10] Underhilla A., Atiquzzamanb M., Ophela J.: Performance of the

Hough transform on a distributed memory multiprocessor, Elesevier,

Microprocessors and Microsystems 22, pp. 355–362, 1999.

[11] Ujaldon M., Ruiz A., Guil N.: On the computation of the Circle

Hough Transform by a GPU rasterizer, Elsevier, Pattern Recognition

Letters 29, pp. 309–318, 2008.

[12] Yuen H.K., Princen J., Illingworth J., Kittler J.: A comparative study

of Hough transform methods for circle finding, Image and Vision

Computing – Special issue: 5th Alvey vision meeting, Vol 8 No 1, 1990.

otrzymano / received: 13.05.2011

przyjęto do druku / accepted: 04.07.2011 artykuł recenzowany

