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Abstract

This paper describes the use of genetic optimization in diagnostic system
decomposition. First, an overview of diagnostic system and the reasons for
its decomposition are given. Decomposition quality index is proposed. In
the second part the analysis of a genetic algorithm application possibility is
placed. The structure of the genome, type of genetic algorithm and genetic
operators are described. Investigations on best values of key parameters is
the main subject of third part. As a summary, a description of industrial
application for diagnostic system decomposition on a hydrocarbon plant is
placed..
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Dekompozycja systemu diagnostycznego
przy wykorzystaniu algorytmoéow
genetycznych

Streszczenie

Artykul zawiera opis wykorzystania optymalizacji genetycznej do
dekompozycji systemu diagnostycznego. Na poczatku zamieszczono
definicje systemu diagnostycznego i przestanki do stosowania dekompozycji.
Zaproponowano wskaznik jakosci dekompozycji. Druga cze$é zawiera
analiz¢ mozliwosci  wykorzystania algorytmu  genetycznego do
rozwiazania postawionego zadania. Przedstawiono struktur¢ genomu, typ
algorytmu oraz operatorow genetycznych. Nastepna cze$¢ artykutu
zawiera wyznaczenie optymalnych warto$ci kluczowych parametréw
algorytmu genetycznego. Na koniec przedstawiono przyktad zastosowania
opracowanej metodologii na rzeczywistej instalacji.

Stowa kluczowe: diagnostyka, algorytmy genetyczne, dekompozycja
systemu.

1. Expedience of system diagnostic in
decentralized structure

Nowadays, most of digital control systems are distributed,
taking into account physical structure as well as responsibility
distribution. Low-level control units have direct, hardware
connection with supervised object or installation and are assigned
to specific technological unit. Higher-level stations usually are not
connected directly to measurement equipment, but to low-level
controllers. Control functions are distributed between many
computer units placed in different positions and working in
parallel, thus typical control system for large scale plant is called
Distributed Control System. Diagnostic functions, as a part of
control and safety tasks, could be also realized in decentralized
structure.

In analogy to decentralized control systems, the decentralization
of diagnostic systems has many advantages:

o Selected parts of installation can be diagnosed in parallel by
separate, independent diagnostic computers.

Technological object decomposition causes important decrease

of investigated system states, what is particularly important

during analysis of multiple faults. Decomposition causes also

significant reduction of demanded computational power and thus

shortens calculation time, also for diagnostic signals generation.

e The decomposition causes, that assumption about existence
only single fault at one time is more rational. Such assumption
gives a simplification of subsystem diagnostic algorithms.

e Decentralized structure promises more robust diagnostic system
in opposition to centralized one. Such system is more resistant
to single diagnostic computers failure.

e Decentralized diagnostic provides better fitted diagnostic
information for different users (information is generated and
presented in suitable form, different for operators, supervisors,
technology engineers, etc.)

o Diagnostic system with decentralized structure can be started
step-by-step, separately for each subsystem.

Diagnostic system application for huge plants requires system
decomposition for subsystems controlled and diagnosed by
separate computer units. Thus algorithms that support system
decomposition were investigated before. Some notes about
methodology applicable to hierarchical systems can be found in
[4, 5, 7], publications [6] are focused on one-level structures.

Usually complete independent subsystems cannot be separated.
The number of interactions in present industrial applications is so
high, that in practice always failure in one subsystem has an
influence to other subsystems. It is recommended to divide whole
system in such way, that interconnections between subsystems are
minimized. In [4] the rules how to find independent parts in the
system and how to divide the process from technological point of
view were given. The problem of system decomposition with
minimal interactions between subsystems was formulated.
Example solution with heuristic Kernighhan and Lin algorithm
(1970) [3] was given in [6]. This paper is focused on genetic
algorithms application to this problem.

2. Diagnostic system description
Diagnostic system can be described as [8]:

o set of all possible faults F, interpreted as any destructive event
that causes system work quality degradation:

F=1{f,:k=12...K}, ©

e set of diagnostic signals, treated as inputs to detection
algorithms in the system:

S=1s,:i=12,.,L}, @)

o Diagnostic relation defined on Cartesian product of F and S
sets:

Res © FxS. @)
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e Formula fyRgss; means, that test s; detects fault fy, in other
words, an occurrence of fault f, causes the appearance of
diagnostic signal s; with value 1, (the symptom). Relation
matrix Rgs is binary diagnostic matrix with elements defined as
follow:

0= (f,,s.)¢R
r(f.s;)=v,(f,)= 1®<<fks’>>€: ()
k1oj FsS

e Relation Rgs can be defined by assigning to each test a subset of
faults detected by this test:

F(sj)z {fk eF:fkRFSsj} (5)

3. Problem formulation

The decomposition of complicated technological unit is
necessary to diagnose it in a decentralized structure. The
decomposition in this case is equivalent to the search of
subsystems with limited size, characterized with maximum
possible mutual independence degree. The recommended
independence requirement can be defined as separation of faults
subsets F,, or separation of diagnostic signals subsets S,. The
problem can be formulated as follows:

3.1. Variant 1

The set of faults F, diagnostic signals S, process variables X and
diagnostic relation Rgs (3) of complex technological unit are
given. Diagnostic signals s;eS should be assigned to N separated
subsets S,,, each with limited count of elements:

v[S|<7. (6)

in a way that minimizes following expression:

Q= > Z‘F(Si)ﬁ F(s, ). ™

3.2. Variant 2

The set of faults F, diagnostic signals S, process variables X and
diagnostic relation Rgs (3) of complex technological unit are
given. Faults f,eF should be assigned to N separated subsets F,,
each with limited count of elements:

v[Fl<y, (®)

in a way that minimizes following expression:

Q= > 3 fs(t)ns(r). ©
m,n=$,¢2n,A..,N kaFm

pan

Decomposition  assures minimal  dependency between
subsystems, and limits for example the need of information
exchange between them. Quality indexes (7) and (9) indirectly
characterize the number of needed data transmission between
diagnostic subsystems.
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4. Genetic algorithm decomposition

The problem mentioned before can be treated as an
optimization task (search for minimal value of quality index (7) or
(9)). To solve this problem genetic algorithm in a standard form,
with constant length genome, was applied. Each genome
(individual) represents complete partitioning of diagnostic matrix.
The genotype has a form of vector consisting of integer numbers,
with size equal to diagnostic signals (variant 1) or faults (variant
2) count. The attachment of diagnostic signal or fault to given
subset is marked by integer number treated as subset number:

9=[0,,9,+-.0¢]e (10)

for variant 2:
9=[0,.9,..9,]e" (11)

In both variants following restriction is fulfilled:

Y e<0;N —1>. (12)

Genome definition grants full and separate partitioning of whole
set S or F into N subsets (6). The limit of each subset size is
assured by the form of final quality index (described below).

In the paper, the genetic operators in well known form were
used:

e Random initiation:

vg, =rand(0;N -1) (13)

e One-point crossover: for given parents g™ and g™, and randomly
selected cross point ¢,e(1; N-1), creates two children:

g° =[gfg§---.gc'j ,gc'\p"ﬂ,---,gh”}
(14)

g° :{gf,” gz“,”---,gc'\p" ,gfpﬂ,---.gﬁ}

e Multi-point crossover: similar to one-point crossover, except
that there is more than one point of crossing and gene exchange.
e Even-odd crossover: for given parents g~ and g", creates two

children:
F

g° =g oM g gl ..

D M FAM F (15)
g =[gl, 0,95 :9,4 v]

Each genome after any changes caused by any genetic operator
mentioned above, needs to be renumbered (change integers inside
genome in order to have all numbers in rising order). This
operation is needed because we do not take into account the order
of received sets. For example, same solution can be described as:

g, =[001222],g, = [112000], g, = [110222]....  (16)

In first approach classical genetic algorithm with elitism was
applied (best individual is kept population by population).
Obijective function is calculated directly with the use of diagnostic
matrix, according to the following algorithm:

1. The genome is decoded in order to get separated subsets of
diagnostic signals. Initial value of quality index is equal to zero
Qa=0.

2. For each subset of diagnostic signals Sy, ke{0, N-1).
2a. For each diagnostic signal Vs;eSy the set of faults detected

by him is created.
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2b. For each fault vf; detected by s;, the set of co-symptoms
§i , also sensitive for fault f;, is created.

2c. If any element from §i do not belongs to S, then

increment quality index by one: Q,=Q,+1.
At the end, to avoid single subset size growth over defined
limit, an additional penalty to quality index is added:

Q=Q, +> 10 max(0,size(S, )) an
k

5. Test example

Lets decompose diagnostic system, defined by diagnostic
matrix from Table 1, and suppose, that three subsystems should be
received as a result. The number of diagnostic signals in each
subsystem should not be bigger than 6.

There are three different optimal decompositions, in sense of
minimal interactions (7), fulfilling given assumptions, presented in
Tables 2, 3 and 4. Separate sets of diagnostic signals are indicated
with colours (white — subsystem 1, blue — subsystem 2, orange —
subsystem 3). The influence of mutual interactions is shown in
columns with ones on the red background.

As example, lets consider second optimal solution. In the first
and second subsystem fault fg is detected, in the second and third
subsystem common faults are { fi1, fxo}-

Each optimal solution have same value of quality index Q,=3.

Tab. 1. Diagnostic matrix of an example system
Tab. 1. Macierz diagnostyczna przyktadowego systemu

Tab. 2. Optimal decomposition 1
Tab. 2. Dekompozycja optymalna 1

fi[f2[f3 [fa]f5 I 6 If7 f8 [ f9 [f10 [f11[f12[f13[f14[f15 [f16[f17[f18]f19[f20[f21[f22

Tab. 3. Optimal decomposition 2
Tab. 3. Dekompozycja optymalna 2

T [f2 [f3 [f4 [f5 [ f6 [f7 | 8 [ f9 [f10 [f11[f12[f13 [f14[f15 [f16[f17]f18[f19[f20[f21[f22

Bl
B2
B3
B4

B7

515
516
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Tab. 4. Optimal decomposition 3
Tab. 4. Dekompozycja optymalna 3

fI[f2 [f3 [f4 [ 5[ 16 [ f7 | 8 [ f9 [f10 [f11[f12[f13[f14[f15 [f16[f17 [f18[f19]f20 [f21]f22

Bl
B2
B3

55

B7

59
510
B1L
12
513
514 [

516

6. Genetic algorithm testing

The first approach assumes the application of the genetic
algorithm in classic form, that Goldberg describes in his book [2],
with complete exchange of individuals in each generation, except
the best one. Each generation of the algorithm creates an entirely
new population of individuals by selecting from the previous
population (using roulette wheel), then mating to produce the new
offspring for the new population. This process continues until the
stopping criteria are met. Random initiation (13) and one-point
crossover (14) were used, algorithm minimizes quality index (17).

To find best values of key parameters of genetic algorithm
application, a number of trial optimization runs were processed.
Investigated parameters were: crossover probability, mutation
probability and population size. For each combination of
parameters from sets given below, 50 runs of GA were executed.

e Population size: {10, 20, 35, 50, 75, 100};
e Crossover probability: {0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.99};
e Mutation probability: {0.002, 0.007, 0.02, 0.07, 0.1, 0.2, 0.3};

Stopping criteria was first of: optimal solution found (individual
with Q,=3) or objective function calls count bigger than 150 000.
The limit of quality function calls was determined arbitrary, with
value that allows to keep rational calculation time, and
significantly below the number of all possible partitions (for given
example 3%>1.4.10" combinations of subsystems). In case of
exceeding quality function calls count without reaching optimum,
the optimization was qualified as missing try.

Mean number of missing tries (in percent) for all combinations
of investigated parameters are presented in Fig. 1.

It should be mentioned, that in about 90% of missing
optimization runs received solution was nearly optimal, with Q,
equal to 4. When the stopping criteria is based only on quality
index (there is no limits on objective functions calls count), GA
always gives optimal solution, but often were happened, that
computational cost of one optimization run was bigger than the
rest 49 tries with same parameters values.

Population 18 - nissing tries

186

% missing 8

68
188
48

2a

.2

Hutation
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Population 28 - missing tries

188
% nissing 0
68
168
a0
80
68 28
a0 b Srall
28
a
[: 5%
Hutation
Crossover
[:]
Population 35 - nissing tries
108
% missing 8
68
188
48
80
&0 2a
40 | b.3 8
28
a
0.2
Hutation
Crossover
a
Population 50 - nissing tries
188
% missing 8
60
168
48
8a
&0 2a
an | B3 a
28
a
8.2
Hutation
Crossover
a
Population 75 - missing tries
188
% missing 8
60
160
a8
8a
68 28
a

48

28

Hutation

Crossover
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Population 188 - nissing tries

180
% nissing e
68
109
48
80
60 208
40 b.3 8
20
a
a.2

Hutation

Crossover

Fig. 1. Missing tries (in percent of all executed)
Rys. 1. Proby nietrafione (w procentach wszystkich prob wykonanych)

Fig. 2 presents mean objective function calls count for all
combinations of investigated parameters.

Same investigations were processed for different crossover
operators (15), but results were significantly worse than presented,
received for one-point crossover. Analogical experiment was done
for other type of genetic algorithm, so called steady-state, similar
to the algorithms described by De Jong [1]. It uses overlapping
populations with a 40% of overlap. Each generation the algorithm
creates a temporary population of individuals, adds these to the
previous population, then removes the worst individuals in order
to return the population to its original size. Observed results are
presented in Fig. 3

Population 18 - nean OF count

14088
Hean QF count 12088
180888¢
80088
140000 w6000
120808 20000
1868888
80688 26008
& a
6068080 b3
408808
20600
a
0.3
Hutation
Crossover
L]
Population 28 - nean OF count
14088¢
126888
16888
86088
140808 .
120808 10000
0OF cokfABBaa
80688 26008
a
L1 ) b3
406888
20000
a
8,

Hutation

Crossover
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Population 18 - mean QF count.

Population 35 - nean OF count

14000¢ 14060t
Hean OF count 12888¢ Hean OF count 12000t
10008¢ 18080t
86000 50000
1400068 148080
66088 60000
120008 126080
160608 40000 106000 40869
806008 20086 36000 20000
66008 [ 3 60000 s °
ageee 480080 i
20808 20000
[ ]
R 8.2
Hutation Hutation
Crossover Crossover
[:] ]
Population 58 - nean OF count Population 28 - nean OF count
14008¢ 14080t
Hean OF count 12886¢ Hean OF count 12080¢
16006t 18060t
se088 80000
1400068 148080
66000 60000
120000 126060
100000 46960 106060 48060
80008 268080 ao00a 28008
60088 3 8 66000 5 e
apeqe ° 48000 "
20808 20000
[ ]
0.2 8.2
Hutation Hutation
Crossover Crossover
] []
Population 75 - nean OF count Population 35 - mean QF count.
14008¢ 14060t
Hean OF count 12000¢ Hean QF count 120086
16006t 18080t
se088 50000
140000 146060
66000 60000
120000 126080
1006068 46868 108080 49089
806080 28808 36000 b 20000
60000 3 a 660860 5 8
46000 3 48880 i
20808 20000
] ]
0.2 8.2
Hutation Hutation
Crossover Crossover
[ (]
Population 188 - nean OF count Population 58 - nean OF count
14000¢ 14060t
Hean OF count 12088t Hean OF count 12a08¢
10008¢ 18080t
80088 50000
146060
140000 56088 60000
120008 126060
106600 46860 108000 40800
80008 26080 30000 26008
60600 3 a9 66080 5 e
40008 " 46868 :
20808 20000
] ]
0.2 8.2

Hutation Hutation

Crossover Crossover

Fig. 2. Mean objective function calls count
Rys. 2. Srednia liczba wywotan przedmiotowej funkcji
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Population 75 - mean QF count.

1468868¢
12000¢
186088¢
Boe08
60008
40008
20008
a

Hean OF count

146008
120088
106088
8o089
66000
46088
28888

Hutation

Crossover

Population 1686 - nean OF count

1468868¢
1268068¢
186088¢
Boe08
60800
48008
20008
a

Hean OF count

146068
126068
106088
8o089
60088
48008
26060

b.2

Hutation

Crossover

Fig. 3. Mean objective function calls count — steady state
Rys. 3. Srednia liczba wywotan przedmiotowej funkcji — stan ustalony

Taking into account the comparison of both investigated types
of genetic algorithms, one can see, that better and more stable
results gives simple version. Steady-state version needs to have
more powerful mutation “impulse”, and better results in this
version can be achieved using bigger population size. Same tests
were processed for steady state version with very little
overlapping (only 2 children for generation). The results in such
case was even worse than with 40% overlapping. Finally, simple
version was selected to the industrial application, based on better
and in general more stable and robust for parameters variation,
results. The values of key parameters were selected as follows:
small population with 10 individuals, crossover probability equal
to 0.4 and mutation probability equal to 0.05.

7. Industrial application

Proposed methodology was applied to vacuum furnace on
hydrocracking plant in PKN Orlen. The desulphurized product of
this installation is a feed for internal power plant. The main task of
the furnace is the preparation of feed to the distillation tower
(heating up crude oil and keeping constant temperature 384 °C).
Constant temperature of hydrocarbon cracking on suitable level
assures demanded quality of products. The simplified scheme of
the plant is presented in Fig. 4.

The feed to the column is heated in four pipe coils (Pass A..D).
Additionally, in convection area of the furnace low pressure steam
(LP, Pass 1) and medium pressure (MP, Pass 2) steam are heated.
Overheated low pressure steam is then added to each distillation
towers C301, C302 and C303. MP steam is partially polled to
factory-wide steam network, and partially added to crude oil, in
order to increase its speed and reduce contaminate substances
production.
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Gidwny kolakior MS

Pass 115

Pass 2 MS

é | ) | E Ec-aus
B

Fig. 4. Installation scheme
Rys. 4. Schemat instalacji

The main goal of plant control is to keep constant temperature
at the furnace outlet. The temperature is controlled by cascade
control of of fuel gas pressure (PC3035).

About 90 diagnostic tests (diagnostic signals) were defined
during plant analysis. Most of them are based on models of
process variables, or heuristic relations between physical values in
the plant. Then an expert defines relation between diagnostic
signals and possible faults, stored as diagnostic matrix. The
meaning of columns and rows in the matrix is shown in Fig. 5:

Symptomy\Uszkodzenia

#H302.FC3026A.S
f-H302.FC3026B.S
f-H302.FC3026C.S

, EHARFCIREDS. ||

1 f-H302.FC3026AA ||

C:

f-H302.FC3026C.A
f-H302.FC3026D.A
f-H302.FC3029A.S
f-H302.FC3029B.S
f-H302.FC3029C.S
f-H302.FC3029D.S
f-H302.FC3029A.A
f-H302.FC3029B.A
f-H302.FC3029C.A
f-H302.FC3029D.A

H302.T3052.S
f-H302.T3053.S

R-H302.FC3026A.S-1C
L-H302.FC3026A.S-1CL N

L-H302.FC3026A.S-2CL 1 N Code of fault: 1
R-H302.FC3026B.5-1C 1 | f-<code of device> {
L-H302.FC3026B.S-1CL 1 11T 1 rC1r
L-H302.FC3026B.S-2CL 1
R-H302.FC3026C.S-1C 1
L-H302.FC3026C.S-1CL 1
L-H302.FC3026C.S-2CL 1
R-H302.FC3026D.S-1C 1
L-H302.FC3026D.S-1CL 1
L-H302.FC3026D.5-2CL 1
R-H302.FC3026A.A-1C 1
R-H302.FC3026B.A-1C 1
R-H302.FC3026C.A-1C 1
| R-H302.FC3026D.A-1C 1
L-H302.FC3029.S-1CL 1 1 1 1
L-H302.FC3029.A-1CL 1 1 1 1
L-H302.FC3029A.S-1CL 1
L-H302.FC3029B.5-1CL 1
| L-H302.FC3020C.S1CL 1
L - HB0R+ GB020D & 164 == 1
L-H302.FC3029A.A-1CL 1 et |
T 302 EC T3 ATcT =1~ Code of diagnostic test: T
L-H302.FC3020C.A-1CL ~ <kind>-<code of device>-<number 1

AICL 4 of test and kind of calculations> L
L-H302.T3049.S-1CL T

N

o e ] 1)1

Fig. 5. A part of diagnostic matrix. f — fault, R — model based diagnostic signal,
L — heuristic diagnostic signal

Rys. 5. Czg$¢ matrycy diagnostycznej. f— uszkodzenie, R — sygnal diagnostyczny
wynikajacy z modelu, L — heurystyczny sygnat diagnostyczny
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Full diagnostic matrix without signal and fault names is shown
in Fig. 6. The goal was to find optimal decomposition to 3
subsystems with 30 diagnostic signals each. 20 independent runs
of genetic algorithm were done. Best received quality index is
equal to 9, and 28 solutions with such quality were found. The
analysis of best solutions shown, that most of them differ in one-
two diagnostic signal, and are grouped into two decomposition

“types” (Fig. 6):

Fig. 6.  Diagnostic matrix for hydrocracking plant vacuum furnace
Rys. 6. Macierz diagnostyczna dla instalcji pieca prozniowego

If ones decides to allow not strictly equal, but similar size of the
subsystems (maximal size set to 35), the decomposition could be
even better (quality index fall down to 6), and the number of
optimal solutions rises up to more than 3500.

8. Summary

In the paper the applicability of genetic algorithms to diagnostic
system decomposition was shown. In opposition to previous
solutions based on graph analysis, proposed approach has many
advantages. First of all, it allows to receive more than one optimal
solution (with same quality index value). This feature gives
a possibility to diagnostic system engineers to select such
decomposition, which is most intuitive, or subsystems are most

connected with technological components, without a loose mutual
independence (decomposition quality).

The analysis of genetic algorithm parameters selection shows,
that in case of greatly incontinuous, nonlinear, discrete objective
function, faster convergence has an algorithm with small
population size. Strong influence of randomly selected starting
point for optimization convergence was also observed. This
influence is big enough to recommend rather several GA runs with
calculation-time based stopping criteria, than one, longer run.
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