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Abstract 
 

This paper describes the use of genetic optimization in diagnostic system 
decomposition. First, an overview of diagnostic system and the reasons for 

its decomposition are given. Decomposition quality index is proposed. In 

the second part the analysis of a genetic algorithm application possibility is 
placed. The structure of the genome, type of genetic algorithm and genetic 

operators are described. Investigations on best values of key parameters is 

the main subject of third part. As a summary, a description of industrial 
application for diagnostic system decomposition on a hydrocarbon plant is 

placed.. 
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Dekompozycja systemu diagnostycznego 
przy wykorzystaniu algorytmów  
genetycznych 

 

Streszczenie 

 

Artykuł zawiera opis wykorzystania optymalizacji genetycznej do 
dekompozycji systemu diagnostycznego. Na początku zamieszczono 

definicje systemu diagnostycznego i przesłanki do stosowania dekompozycji. 

Zaproponowano wskaźnik jakości dekompozycji. Druga część zawiera 
analizę możliwości wykorzystania algorytmu genetycznego do 

rozwiązania postawionego zadania. Przedstawiono strukturę genomu, typ 

algorytmu oraz operatorów genetycznych. Następna część artykułu 
zawiera wyznaczenie optymalnych wartości kluczowych parametrów 

algorytmu genetycznego. Na koniec przedstawiono przykład zastosowania 

opracowanej metodologii na rzeczywistej instalacji.  
 
Słowa kluczowe: diagnostyka, algorytmy genetyczne, dekompozycja 

systemu. 

 

1. Expedience of system diagnostic in  
decentralized structure 

 

Nowadays, most of digital control systems are distributed, 

taking into account physical structure as well as responsibility 

distribution. Low-level control units have direct, hardware 

connection with supervised object or installation and are assigned 

to specific technological unit. Higher-level stations usually are not 

connected directly to measurement equipment, but to low-level 

controllers. Control functions are distributed between many 

computer units placed in different positions and working in 

parallel, thus typical control system for large scale plant is called 

Distributed Control System. Diagnostic functions, as a part of 

control and safety tasks, could be also realized in decentralized 

structure. 

In analogy to decentralized control systems, the decentralization 

of diagnostic systems has many advantages: 

 Selected parts of installation can be diagnosed in parallel by 

separate, independent diagnostic computers.  

 Technological object decomposition causes important decrease 

of investigated system states, what is particularly important 
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during analysis of multiple faults. Decomposition causes also 

significant reduction of demanded computational power and thus 

shortens calculation time, also for diagnostic signals generation. 

 The decomposition causes, that assumption about existence 

only single fault at one time is more rational. Such assumption 

gives a simplification of subsystem diagnostic algorithms.  

 Decentralized structure promises more robust diagnostic system 

in opposition to centralized one. Such system is more resistant 

to single diagnostic computers failure. 

 Decentralized diagnostic provides better fitted diagnostic 

information for different users (information is generated and 

presented in suitable form, different for operators, supervisors, 

technology engineers, etc.)  

 Diagnostic system with decentralized structure can be started 

step-by-step, separately for each subsystem. 

Diagnostic system application for huge plants requires system 

decomposition for subsystems controlled and diagnosed by 

separate computer units. Thus algorithms that support system 

decomposition were investigated before. Some notes about 

methodology applicable to hierarchical systems can be found in 

[4, 5, 7], publications [6] are focused on one-level structures.  

Usually complete independent subsystems cannot be separated. 

The number of interactions in present industrial applications is so 

high, that in practice always failure in one subsystem has an 

influence to other subsystems. It is recommended to divide whole 

system in such way, that interconnections between subsystems are 

minimized. In [4] the rules how to find independent parts in the 

system and how to divide the process from technological point of 

view were given. The problem of system decomposition with 

minimal interactions between subsystems was formulated. 

Example solution with heuristic Kernighhan and Lin algorithm 

(1970) [3] was given in [6]. This paper is focused on genetic 

algorithms application to this problem. 

 

2. Diagnostic system description 
 

Diagnostic system can be described as [8]: 

 set of all possible faults F, interpreted as any destructive event 

that causes system work quality degradation:  

 

  K,,=kf=F k ...1,2: , (1) 

 

 set of diagnostic signals, treated as inputs to detection 

algorithms in the system: 

 

  L,,=js=S j ...1,2: , (2) 

 

 Diagnostic relation defined on Cartesian product of F and S 

sets: 

 SFRFS  . (3) 
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 Formula fkRFSsj means, that test sj detects fault fk, in other 

words, an occurrence of fault fk causes the appearance of 

diagnostic signal sj with value 1, (the symptom). Relation 

matrix RFS is binary diagnostic matrix with elements defined as 

follow: 

 

    












FSjk

FSjk

kjjk

Rs,f

Rs,f
=fvs,fr

1

0
  (4) 

 

 Relation RFS can be defined by assigning to each test a subset of 

faults detected by this test: 

 

    jFSkkj sRfFf=sF :  (5) 

 

 

3. Problem formulation 
 

The decomposition of complicated technological unit is 

necessary to diagnose it in a decentralized structure. The 

decomposition in this case is equivalent to the search of 

subsystems with limited size, characterized with maximum 

possible mutual independence degree. The recommended 

independence requirement can be defined as separation of faults 

subsets Fn or separation of diagnostic signals subsets Sn. The 

problem can be formulated as follows:  

 

3.1. Variant 1 
 

The set of faults F, diagnostic signals S, process variables X and 

diagnostic relation RFS (3) of complex technological unit are 

given. Diagnostic signals sjS should be assigned to N separated 

subsets Sn, each with limited count of elements: 

 

   γSn
n

 , (6) 

 

in a way that minimizes following expression: 

 

      




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s
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3.2. Variant 2 
 

The set of faults F, diagnostic signals S, process variables X and 

diagnostic relation RFS (3) of complex technological unit are 

given. Faults fkF should be assigned to N separated subsets Fn, 

each with limited count of elements: 

 

    γFn
n

 , (8) 

 

in a way that minimizes following expression: 
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 . (9) 

 

Decomposition assures minimal dependency between 

subsystems, and limits for example the need of information 

exchange between them. Quality indexes (7) and (9) indirectly 

characterize the number of needed data transmission between 

diagnostic subsystems. 

 

4. Genetic algorithm decomposition 
 

The problem mentioned before can be treated as an 

optimization task (search for minimal value of quality index (7) or 

(9)). To solve this problem genetic algorithm in a standard form, 

with constant length genome, was applied. Each genome 

(individual) represents complete partitioning of diagnostic matrix. 

The genotype has a form of vector consisting of integer numbers, 

with size equal to diagnostic signals (variant 1) or faults (variant 

2) count. The attachment of diagnostic signal or fault to given 

subset is marked by integer number treated as subset number: 

 

   K

Kg,,g,g=g  ...21  (10) 

 

for variant 2:  

   L

Lg,,g,g=g  ...21  (11) 

 

In both variants following restriction is fulfilled:  

 

 10  N;gi
i

. (12) 

 

Genome definition grants full and separate partitioning of whole 

set S or F into N subsets (6). The limit of each subset size is 

assured by the form of final quality index (described below).  

In the paper, the genetic operators in well known form were 

used:  

 Random initiation:  

 10  N;rand=gi
i

 (13) 

 

 One-point crossover: for given parents gF and gM, and randomly 
selected cross point cp1; N1, creates two children:  
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 (14) 

 

 Multi-point crossover: similar to one-point crossover, except 

that there is more than one point of crossing and gene exchange. 

 Even-odd crossover: for given parents gF and gM, creates two 

children:  

 
 
 ...

...

432,1,

432,1,

,g,ggg=g

,g,ggg=g

FMFMD

MFMFS

 (15) 

 

Each genome after any changes caused by any genetic operator 

mentioned above, needs to be renumbered (change integers inside 

genome in order to have all numbers in rising order). This 

operation is needed because we do not take into account the order 

of received sets. For example, same solution can be described as:  

 

 
     ....110222112000001222 321 ,=g,=g,=g  (16) 

 

In first approach classical genetic algorithm with elitism was 

applied (best individual is kept population by population). 

Objective function is calculated directly with the use of diagnostic 

matrix, according to the following algorithm:  

1. The genome is decoded in order to get separated subsets of 

diagnostic signals. Initial value of quality index is equal to zero 

Qa=0. 

2. For each subset of diagnostic signals Sk, k0, N1. 
2a. For each diagnostic signal siSk the set of faults detected 

by him is created. 
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2b. For each fault fj detected by si, the set of co-symptoms 

iŜ , also sensitive for fault fj, is created.  

2c. If any element from iŜ  do not belongs to Sk, then 

increment quality index by one: Qa=Qa+1. 

At the end, to avoid single subset size growth over defined 

limit, an additional penalty to quality index is added: 

 

    
k

ka Ssizemax+Q=Q 0,10  (17) 

 

 

5. Test example 
 

Lets decompose diagnostic system, defined by diagnostic 

matrix from Table 1, and suppose, that three subsystems should be 

received as a result. The number of diagnostic signals in each 

subsystem should not be bigger than 6.  

There are three different optimal decompositions, in sense of 

minimal interactions (7), fulfilling given assumptions, presented in 

Tables 2, 3 and 4. Separate sets of diagnostic signals are indicated 

with colours (white – subsystem 1, blue – subsystem 2, orange – 

subsystem 3). The influence of mutual interactions is shown in 

columns with ones on the red background.  

As example, lets consider second optimal solution. In the first 

and second subsystem fault f9 is detected, in the second and third 

subsystem common faults are { f11, f20}. 

Each optimal solution have same value of quality index Qa=3. 

 
Tab. 1.  Diagnostic matrix of an example system 

Tab. 1.  Macierz diagnostyczna przykładowego systemu 

 
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

s1 1 1

s2 1 1

s3 1 1

s4 1 1 1

s5 1 1 1

s6 1 1

s7 1 1

s8 1 1 1

s9 1 1 1 1

s10 1 1 1

s11 1 1 1

s12 1 1

s13 1 1

s14 1 1 1

s15 1 1

s16 1 1   
 

 
Tab. 2.  Optimal decomposition 1 

Tab. 2.  Dekompozycja optymalna 1 

 
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

s1 1 1
s2 1 1
s3 1 1
s4 1 1 1
s5 1 1 1
s6 1 1
s7 1 1
s8 1 1 1
s9 1 1 1 1
s10 1 1 1

s11 1 1 1
s12 1 1
s13 1 1
s14 1 1 1
s15 1 1
s16 1 1  
 

 
Tab. 3.  Optimal decomposition 2 

Tab. 3.  Dekompozycja optymalna 2 

 
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

s1 1 1
s2 1 1
s3 1 1
s4 1 1 1
s5 1 1 1
s6 1 1
s7 1 1
s8 1 1 1
s9 1 1 1 1
s10 1 1 1

s11 1 1 1
s12 1 1
s13 1 1
s14 1 1 1
s15 1 1
s16 1 1  
 

 

Tab. 4.  Optimal decomposition 3 

Tab. 4.  Dekompozycja optymalna 3 

 
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

s1 1 1
s2 1 1
s3 1 1
s4 1 1 1
s5 1 1 1
s6 1 1
s7 1 1
s8 1 1 1
s9 1 1 1 1
s10 1 1 1

s11 1 1 1
s12 1 1
s13 1 1
s14 1 1 1
s15 1 1
s16 1 1  

 

 

6. Genetic algorithm testing 
 

The first approach assumes the application of the genetic 

algorithm in classic form, that Goldberg describes in his book [2], 

with complete exchange of individuals in each generation, except 

the best one. Each generation of the algorithm creates an entirely 

new population of individuals by selecting from the previous 

population (using roulette wheel), then mating to produce the new 

offspring for the new population. This process continues until the 

stopping criteria are met. Random initiation (13) and one-point 

crossover (14) were used, algorithm minimizes quality index (17).  

To find best values of key parameters of genetic algorithm 

application, a number of trial optimization runs were processed. 

Investigated parameters were: crossover probability, mutation 

probability and population size. For each combination of 

parameters from sets given below, 50 runs of GA were executed.  

 Population size: {10, 20, 35, 50, 75, 100}; 

 Crossover probability: {0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.99}; 

 Mutation probability: {0.002, 0.007, 0.02, 0.07, 0.1, 0.2, 0.3};  

Stopping criteria was first of: optimal solution found (individual 

with Qa=3) or objective function calls count bigger than 150 000. 

The limit of quality function calls was determined arbitrary, with 

value that allows to keep rational calculation time, and 

significantly below the number of all possible partitions (for given 

example 315>1.4107 combinations of subsystems). In case of 

exceeding quality function calls count without reaching optimum, 

the optimization was qualified as missing try.  

Mean number of missing tries (in percent) for all combinations 

of investigated parameters are presented in Fig. 1. 

It should be mentioned, that in about 90% of missing 

optimization runs received solution was nearly optimal, with Qa 

equal to 4. When the stopping criteria is based only on quality 

index (there is no limits on objective functions calls count), GA 

always gives optimal solution, but often were happened, that 

computational cost of one optimization run was bigger than the 

rest 49 tries with same parameters values. 
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Fig. 1.  Missing tries (in percent of all executed) 

Rys. 1.  Próby nietrafione (w procentach wszystkich prób wykonanych) 

 

Fig. 2 presents mean objective function calls count for all 

combinations of investigated parameters.  

Same investigations were processed for different crossover 

operators (15), but results were significantly worse than presented, 

received for one-point crossover. Analogical experiment was done 

for other type of genetic algorithm, so called steady-state, similar 

to the algorithms described by De Jong [1]. It uses overlapping 

populations with a 40% of overlap. Each generation the algorithm 

creates a temporary population of individuals, adds these to the 

previous population, then removes the worst individuals in order 

to return the population to its original size. Observed results are 

presented in Fig. 3 
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Fig. 2.  Mean objective function calls count 

Rys. 2.  Średnia liczba wywołań przedmiotowej funkcji 
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Fig. 3.  Mean objective function calls count – steady state 

Rys. 3.  Średnia liczba wywołań przedmiotowej funkcji – stan ustalony 

 

Taking into account the comparison of both investigated types 

of genetic algorithms, one can see, that better and more stable 

results gives simple version. Steady-state version needs to have 

more powerful mutation “impulse”, and better results in this 

version can be achieved using bigger population size. Same tests 

were processed for steady state version with very little 

overlapping (only 2 children for generation). The results in such 

case was even worse than with 40% overlapping. Finally, simple 

version was selected to the industrial application, based on better 

and in general more stable and robust for parameters variation, 

results. The values of key parameters were selected as follows: 

small population with 10 individuals, crossover probability equal 

to 0.4 and mutation probability equal to 0.05.  

 

7. Industrial application 
 

Proposed methodology was applied to vacuum furnace on 

hydrocracking plant in PKN Orlen. The desulphurized product of 

this installation is a feed for internal power plant. The main task of 

the furnace is the preparation of feed to the distillation tower 

(heating up crude oil and keeping constant temperature 384 oC). 

Constant temperature of hydrocarbon cracking on suitable level 

assures demanded quality of products. The simplified scheme of 

the plant is presented in Fig. 4. 

The feed to the column is heated in four pipe coils (Pass A..D). 

Additionally, in convection area of the furnace low pressure steam 

(LP, Pass 1) and medium pressure (MP, Pass 2) steam are heated. 

Overheated low pressure steam is then added to each distillation 

towers C301, C302 and C303. MP steam is partially polled to 

factory-wide steam network, and partially added to crude oil, in 

order to increase its speed and reduce contaminate substances 

production.  

 

 
 

Fig. 4.  Installation scheme 

Rys. 4.  Schemat instalacji 

 

The main goal of plant control is to keep constant temperature 

at the furnace outlet. The temperature is controlled by cascade 

control of of fuel gas pressure (PC3035). 

About 90 diagnostic tests (diagnostic signals) were defined 

during plant analysis. Most of them are based on models of 

process variables, or heuristic relations between physical values in 

the plant. Then an expert defines relation between diagnostic 

signals and possible faults, stored as diagnostic matrix. The 

meaning of columns and rows in the matrix is shown in Fig. 5: 

 

Symptomy\Uszkodzenia

f-
H

30
2.

F
C

30
26

A
.S

f-
H

30
2.

F
C

30
26

B
.S

f-
H

30
2.

F
C

30
26

C
.S

f-
H

30
2.

F
C

30
26

D
.S

f-
H

30
2.

F
C

30
26

A
.A

f-
H

30
2.

F
C

30
26

B
.A

f-
H

30
2.

F
C

30
26

C
.A

f-
H

30
2.

F
C

30
26

D
.A

f-
H

30
2.

F
C

30
29

A
.S

f-
H

30
2.

F
C

30
29

B
.S

f-
H

30
2.

F
C

30
29

C
.S

f-
H

30
2.

F
C

30
29

D
.S

f-
H

30
2.

F
C

30
29

A
.A

f-
H

30
2.

F
C

30
29

B
.A

f-
H

30
2.

F
C

30
29

C
.A

f-
H

30
2.

F
C

30
29

D
.A

f-
H

30
2.

T
30

52
.S

f-
H

30
2.

T
30

53
.S

R-H302.FC3026A.S-1C 1

L-H302.FC3026A.S-1CL 1

L-H302.FC3026A.S-2CL 1

R-H302.FC3026B.S-1C 1

L-H302.FC3026B.S-1CL 1

L-H302.FC3026B.S-2CL 1

R-H302.FC3026C.S-1C 1

L-H302.FC3026C.S-1CL 1

L-H302.FC3026C.S-2CL 1

R-H302.FC3026D.S-1C 1

L-H302.FC3026D.S-1CL 1

L-H302.FC3026D.S-2CL 1

R-H302.FC3026A.A-1C 1

R-H302.FC3026B.A-1C 1

R-H302.FC3026C.A-1C 1

R-H302.FC3026D.A-1C 1

L-H302.FC3029.S-1CL 1 1 1 1

L-H302.FC3029.A-1CL 1 1 1 1

L-H302.FC3029A.S-1CL 1

L-H302.FC3029B.S-1CL 1

L-H302.FC3029C.S-1CL 1

L-H302.FC3029D.S-1CL 1

L-H302.FC3029A.A-1CL 1

L-H302.FC3029B.A-1CL 1

L-H302.FC3029C.A-1CL 1

L-H302.FC3029D.A-1CL 1

L-H302.T3049.S-1CL 1 1

Code of diagnostic test:
<kind>-<code of device>-<number

of test and kind of calculations>

Code of fault:
f-<code of device>

 
 

Fig. 5.  A part of diagnostic matrix. f – fault, R – model based diagnostic signal,  

L – heuristic diagnostic signal 

Rys. 5.  Część matrycy diagnostycznej. f – uszkodzenie, R – sygnał diagnostyczny 

wynikający z modelu, L – heurystyczny sygnał diagnostyczny 
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Full diagnostic matrix without signal and fault names is shown 

in Fig. 6. The goal was to find optimal decomposition to 3 

subsystems with 30 diagnostic signals each. 20 independent runs 

of genetic algorithm were done. Best received quality index is 

equal to 9, and 28 solutions with such quality were found. The 

analysis of best solutions shown, that most of them differ in one-

two diagnostic signal, and are grouped into two decomposition 

“types” (Fig. 6): 

 

Original DM 

 

Best decomposition 1 

 

Best decomposition 2 

 

 

Fig. 6.  Diagnostic matrix for hydrocracking plant vacuum furnace 

Rys. 6.  Macierz diagnostyczna dla instalcji pieca próżniowego 

 

If ones decides to allow not strictly equal, but similar size of the 

subsystems (maximal size set to 35), the decomposition could be 

even better (quality index fall down to 6), and the number of 

optimal solutions rises up to more than 3500.  

 

8. Summary 
 

In the paper the applicability of genetic algorithms to diagnostic 

system decomposition was shown. In opposition to previous 

solutions based on graph analysis, proposed approach has many 

advantages. First of all, it allows to receive more than one optimal 

solution (with same quality index value). This feature gives  

a possibility to diagnostic system engineers to select such 

decomposition, which is most intuitive, or subsystems are most 

connected with technological components, without a loose mutual 

independence (decomposition quality). 

The analysis of genetic algorithm parameters selection shows, 

that in case of greatly incontinuous, nonlinear, discrete objective 

function, faster convergence has an algorithm with small 

population size. Strong influence of randomly selected starting 

point for optimization convergence was also observed. This 

influence is big enough to recommend rather several GA runs with 

calculation-time based stopping criteria, than one, longer run. 
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