PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fenomen górnej granicy wybuchowości (GGW) paliw w powietrzu i tlenie w warunkach podwyższonego ciśnienia i temperatury

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The phenomenon of upper explosion limit of fuels in air and oxygen at elevated temperature and pressure
Języki publikacji
EN
Abstrakty
EN
The presented research work has been done in the Institute of Heat Engineering laboratories at Warsaw University of Technology. The explosive range of chosen gases is determined by specific conditions of temperature and pressure. These values also depend on different factors, such as the shape of the explosion vessel, ignition energy or the presence of other substances which may, for instance, have catalytic properties. The obtained results relate the influence of chosen physical parameters on the value of the Upper Explosive Limit (UEL). Other research data is also presented in the paper. This was obtained from specially designed spherical explosion chamber of a volume of 2.3 dm3. Exploding wire was used as the ignition source. It released about 0.1 J energy each time. The influence of the increased initial temperatures of those mixtures on their value of UEL was also investigated in the range of 20°C up to 200°C. Further experiments on the influence of elevated conditions, as well as the position of ignition source and residence time, were carried out as well. A number of higher alkanes were examined (up to n-butane), both in air and oxygen mixtures. These experiments allowed the author to find distinct dependencies in the values of UEL under the investigation conditions. The results have been compared and validated with literature data and numerical code, according to the experimental conditions, methodology and adopted criteria of UEL determination. Some of the effects found were possible to explain only by acceptance of such phenomenon as cool flames appearing in the regions close to UEL. This seems to be particularly important when safety parameters or numerical modelling standards for UEL are sought.
PL
Przedstawiona paca doświadczalna została wykonana w laboratoriach Instytutu Techniki Cieplnej PW. Artykuł zawiera wyniki serii pomiarów, których celem było ustalenie wpływu wybranych parametrów fizycznych na wartość ciśnienia wybuchu dla mieszanin gazowych alkanów z tlenem. Dane takie, łącznie z wyznaczoną wartością górnej granicy wybuchowości (GGW) dla poszczególnych mieszanin, mają podstawowe znaczenie dla ustalania odpowiednich norm bezpieczeństwa w przemyśle chemicznym. Badaniom poddano gazowe alkany, a więc metan, etan, propan oraz n-butan. Wyniki, prezentowane w postaci sumarycznych danych (tabel), zostały uzyskane w wyniku przeprowadzenia pomiarów w stalowym naczyniu kulistym o objętości 2,3 dm3. Jako źródło zapłonu użyto tzw. eksplodujący drucik (exploding wire), który uwalniał około 0,1 J energii za każdym razem. Przebieg zmian ciśnienia w czasie rejestrowano przy użyciu szybkiego czujnika piezoelektrycznego. Zbadano wpływ temperatury początkowej mieszanin testowych, w zakresie od 20°C do 200°C. Przeprowadzono również pomiary w zakresie wzrastającego ciśnienia początkowego mieszanin. Na ich podstawie autor wyznaczył wyraźne zależności GGW od początkowej wartości T oraz p badanych mieszanin.
Rocznik
Strony
1--70
Opis fizyczny
Bibliogr. 86 poz., rys., tab., wzory
Twórcy
autor
  • Institute of Aviation
Bibliografia
  • [1] R. A. Hefner, Int. J. Hydrogen Energy, vol. 27 (1), 2002.
  • [2] H. F. Coward, G. W. Jones, Limits of Inflammability of Gases and Vapors, U. S. Bureau of Mines, Bulletin 279, 1939.
  • [3] A. C. Edgerton, Limits of Flammability, Proc. 4th Symp. on Combustion, The Combustion Institute, pp. 4-13, 1952.
  • [4] M. Gieras, R. Klemens, G. Rarata, P. Wolański, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature, Journal of Loss Prevention in the Process Industries, vol. 19, pp. 263-270, 2006.
  • [5] A. A. Pękalski, E. Terli, J. F. Zevenbergen, S. M. Lemkowitz, H. J. Pasman, Influence of the ignition delay on the explosion parameters of hydrocarbon-air-oxygen mixtures at elevated pressure and temperature, Proceedings of the Combustion Institute, vol. 30, pp. 1933-1939, 2005.
  • [6] B. Lewis, G. von Elbe, Combustion, Flames, and Explosions of Gases, Third Edition, Academic Press, Orlando, FL, pp. 333-361, 1961.
  • [7] A. G. Gaydon, H. G. Wolfhard, Flames: Their Structure, Radiation, and Temperature, John Wiley and Sons, New York, 1979.
  • [8] P. D. Ronney, H. Y. Wachman, Effect of Gravity on Laminar Premixed Gas Combustion: Flammability Limits and Burning Velocities, Combustion and Flame, vol. 62, pp. 107-119, 1985.
  • [9] A. E. Shilov, N. N. Semenov and the chemistry of the 20th century (to 100th anniversary of his birth), Pure & Applied Chemistry, vol. 69, No 4, pp. 857-863, 1997.
  • [10] V. N. Kondrat’ev, Gas-Phase Reactions: Kinetics and Mechanisms, Springer-Verlag, 1980.
  • [11] N. M. Emanuel, Journal of Physics and Chemistry, USSR, vol. 19, 1945.
  • [12] J. Warnatz, Combustion Chemistry, pp. 197-360, Springer-Verlag, New York, 1984.
  • [13] B. E. Milton, Thermodynamics, Combustion and Engines, Intl Specialized Book Service, 1995.
  • [14] H. F. Coward, G. W. Jones, Limts of Flammability of Gases and Vapors, Bulletin 503, U. S. Bureau of Mines, Washington, DC, 1952.
  • [15] M. G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors, Bulletin 627, U. S. Bureau of Mines, Washington, DC, 1965.
  • [16] R. J. Cato, W. H. Gilbert, J. M. Kuchta, Effect of Temperature on Upper Flammabiility Limits of Hydrocarbon Fuel Vapors in Air, United States Department of the Interior, Bureau of Mines (TIB Hannover licensed customer copy and printed for Warsaw University of Technology, 2007).
  • [17] H. K. Christner, Experimentelle und theoretische Bestimmung der Druck- und Temperaturabhängigkeit von Zündgrenzen, dargestellt am Beispiel von Alkohol/Luft-Gemischen, Dissertation, Universität Erlangen-Nürnberg, Erlangen, 1974.
  • [18] B. Vanderstraeten, D. Tuerlinckx, J. Berghmans, S. Vliegen, E. Van’t Oost, B. Smit, Experimental study of the pressure and temperature dependence on the upper flammability limit of methane-air mixtures, Journal of Hazardous Materials, vol. 56, pp. 237-246, 1997.
  • [19] F. Van den Schoor, F. Verplaetsen, The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures, Journal of Hazardous Materials, vol. A128, pp. 1-9, 2006.
  • [20] F. Van den Schoor, F. Norman, F. Verplaetsen, Influence of the ignition source location on the determination of the explosion pressure at elevated initial pressures, Journal of Loss Prevention in the Process Industries, vol. 19, pp. 459-462, 2006.
  • [21] EN 1839, Determination of Explosion Limits of Gases and Vapours, European Committee for Standardisation, Brussels, 2003.
  • [22] International Standard ISO 6184-2, Explosion Protection Systems - Part 2: Determination of Explosion Indices of Combustible Gases in Air, International Organisation for Standardisation, 1985.
  • [23] A. Takahashi, Y. Urano, K. Tokuhashi, H. Nagai, M. Kaise, S. Kondo, Fusing ignition of various metal wires for explosion limits measurement of methane/air mixture, Journal of Loss Prevention in the Process Industries, vol. 11, pp. 353-360, 1998.
  • [24] Y. Hashiguchi, T. Ogahara, M. Iwasaka, K. Ozawa, Effect of pressure on the detonation limit of ethylene, International Chemical Engineering, vol. 6, pp. 737-743, 1966.
  • [25] I. Wierzba, B. B. Ale, Effects of temperature and time of exposure on the flammability limits of hydrogen-air mixtures, International Journal of Hydrogen Energy, vol. 23, pp. 1197-1202, 1998.
  • [26] ASTM E918-83, Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure, American Society for Testing and Materials, 1993.
  • [27] L. G. Britton, Two hundred years of flammable limits, Process Safety Progress, vol. 21, No 1, pp. 1-11, 2002.
  • [28] G. De Smedt, F. de Corte, R. Notelé, J. Berghmans, Comparison of 2 standard test methods for determining explosion limits of gases at atmospheric conditions, Journal of Hazardous Materials, vol. 70, pp. 105-113, 1999.
  • [29] DIN 51649 Teil 1, Bestimmung der Explosionsgrenzen von Gasen und Gasgemischen in Luft, Deutsches Institut für Normung, Berlin, 1986.
  • [30] V. Schröder, R. Daubitz, Evaluation of test methods for the determination of explosion limits of gases and vapours, Proceedings of the 11th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, pp. 2109-2117, 2004.
  • [31] ASTM E681-94, Standard test method for concentration limits of flammability of chemicals, American Society for Testing and Materials, Philadelphia, 1994.
  • [32] N. Dam, A. Pękalski, Proper determination of the upper flammability limit at elevated conditions (high temperature and high pressure), http://www.dct.tudelft.nl/part/explosion/
  • [33] SAFe and Efficient hydrocarbon oxidation processes by KINetics and Explosion eXpertise and development of computational process engineering tools, Workshop, Saint Denis La Plaine, November 2006.
  • [34] CEN/TC 305/WG 1/SG 4, Determination of Explosion Limits of Gas and Vapours, Rev. 3, Dryft of prEN 1839, Version October 2000.
  • [35] K. L. Cashdollar, M. Hertzberg, 20-L explosibility test chamber for dust and gases, Review of Scientific Instruments, vol. 56 (4), pp. 596-602, 1985.
  • [36] A. Dahoe, Dust Explosions: A study of Flame Propagation, PhD dissertation, TU Delft, 2000.
  • [37] C. V. Mashuga, Determination of the Combustion Behaviour for Pure Component and Mixtures Using a 20-litre Sphere, dissertation, Michigan Technology University, 1999.
  • [38] A. A. Pękalski, H. P. Schildberg, P. S. Smallegange, S. M. Lemkowitz, J. F. Zevenbergen, M. Braithwaite, H. J. Pasman, Determination of the explosion behaviour of methane and propene in air or oxygen at standard and elevated conditions, Process Safety and Environmental Protection, vol. 83(B5), pp. 421-429, 2005.
  • [39] K. L. Cashdollar, I. A. Zlochower, G. M. Green, R. A. Thomas, M. Hertzberg, Flammability of methane, propane, and hydrogen gases, Journal of Loss Prevention in the Process Industries, vol. 13, pp. 327-340, 2000.
  • [40] S. Y. Liao, Q. Cheng, D. M. Jiang, J. Gao, Experimental study of flammability limits of natural gas-air mixture, Journal of Hazardous Materials, vol. B119, pp. 81-84, 2005.
  • [41] K. Holtappels, Report on the experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise - Part 1: methane, hydrogen and propylene, Federal Institute for Materials Research and Testing (BAM), Contract No EVG1-CT-2002-00072.
  • [42] H. Eichert, M. Fischer, Sicherheit der Wasserstoff-Energietechnik - Eine notwendige Voraussetzung, VGB Kraftwerkstechnik 72, 1992.
  • [43] A. Gasse, Experimentelle Bestimmung und Simulation von Explosionsgrenzen, untersucht an wasserstoffhaltigen Brenngasgemischen, Dissertation, Uni-GH Paderborn, Germany, 1992.
  • [44] V. Schroeder, K. Holtappels, Explosion Characteristics of Hydrogen-Air and Hydrogen-Oxygen Mixtures at Elevated Pressures, Bundesanstalt für Materialforschung und fruefung (BAM), Berlin, Germany, 2002.
  • [45] H. Janssen, J. C. Bringmann, B. Emonts, V. Schroeder, Safety-related studies on hydrogen production in high-pressure electrolysers, Berlin, Germany, 2003.
  • [46] C. Liebner, V. Schröder, K. Holtappels, Safety Characteristics of hydrogen at super ambitne conditions: Lubricant contamination influencing the Auto Ignition Temperature, Berlin, Germany, 2006.
  • [47] L. Isadore, D. F. E. Belles, Survey of hydrogen combustion properties, National Advisory Committee for Aeronautics, Report 1383.
  • [48] NFPA 325, National Fire Protection Association, 1994.
  • [49] Zou, Renjun, Lou, Qingkun, Liu, Huicai, Niu, Fenghui, Investigation of coke deposition during the pyrolysis of hydrocarbon, Industrial and Engineering Chemistry Research, 26 (12), pp. 2528-2532, 1987.
  • [50] J. Warnatz, U. Maas, et al., Combustion, Springer-Verlag, Berlin, 2001.
  • [51] J. M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., vol. 29 (6), pp. 599-634, 2003.
  • [52] J. F. Griffiths, J. A. Barnard, Flame and Combustion, Blacie Academic & Professional, Glasgow, 1995.
  • [53] R. I. A. Patterson, Numerical Modeling of Soot Formation, University of Cambridge, 2007.
  • [54] J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons, Combustion and Flame, vol. 121, pp. 22-136, 2000.
  • [55] M. Frenklach, H. Wang, Soot Formation in Combustion: Mechanisms and Models, pp. 165-192, Springer Verlag, 1994.
  • [56] V. Warth, N. Stef, P.A. Glaude, F. Battin-Leclerc, G. Scacchi, G. M. Come, Computer Aided Derivation of Gas-Phase Oxidation Mechanisms: Application to the Modeling of the Oxidation of n-Butane, Combustion and Flame, vol. 114, pp. 81-102, 1998.
  • [57] A. A. Pękalski, J. F. Zevenbergen, H. J. Pasman, S. M. Lemkowitz, A. E. Dahoe, B. Scarlett, The relation of cool flames and auto-ignition phenomena to process safety at elevated pressure and temperature, Journal of Hazardous Materials, vol. 93, pp. 93-105, 2002.
  • [58] Y. Yamasaki, N. Iida, Numerical Analysis of Auto Ignition and Combustion of n-Butane and Air Mixture in The Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions, The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Nagoya, 2001.
  • [59] S. M. Frolov, V. Y. Basevich, V. A. Smetanyuk, A. A. Belyaev, H. J. Pasman, Oxidation and combustion of fuel-rich n-butane-oxygen mixture in a standard 20-liter explosion vessel, European Conference on Computational Fluid Dynamics ECCOMAS CFD, The Netherlands, 2006.
  • [60] P. G. Lignola, E. Reverchon, Prog. Energy Combust. Sci., vol. 13 (1), pp. 75-96, 1987.
  • [61] C. Mengel, K. Lucka, H. Köhne, The influence of pressure on the stability limits mixture preparation by cool flames, Proceedings of the European Combustion Meeting, 2005.
  • [62] P. Barbé, F. Battin-Leclerc, G. M. Côme, Experimental and modeling study of methane and ethane oxidation between 773 and 1,573 K, Journal of Chim. Phys., vol. 92, pp. 1666-1692, 1995.
  • [63] A. Konnov, Version 0.5, [http://homepages.vub.ac.be/~akonnov]
  • [64] E. L. Petersen, D. F. Davidson, R. K. Hanson, Kinetics modeling of shock-induced ignition in lowdilution CH4/O2 mixtures at high pressures and intermediate temperatures, Combustion and Flame, vol. 117, pp. 272-290, 1999.
  • [65] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. Hanson, S. Song, W. C. Gardiner Jr., V. Lissianski, Z. Qin, GRI 3.0. [http://www.me.berkeley.edu/gri-mech]
  • [66] F. Van den Schoor, R. T. E. Hermanns, J. A. van Oijen, F. Verplaetsen, L. P. H. de Goey, Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures, Journal of Hazardous Materials, vol. 150, pp. 573-581, 2008.
  • [67] http://www.reactiondesign.com/
  • [68] S. Kondo, Y. Urano, K. Tokuhashi, A. Takahashi, K. Tanaka, Prediction of flammability of gases by using F-number analysis, Journal of hazardous materials, vol. 82 (2), pp. 113-128, 2001.
  • [69] C. V. Mashuga, D. A. Crowl, Flammability zone prediction using calculated adiabatic flame temperatures, Process Safety Progress, vol. 18 (3), pp. 127-134, 2004.
  • [70] M. Pofit-Szczepańska, Wybrane zagadnienia z chemii ogólnej, fizykochemii spalania i rozwoju pożarów, Kraków 1994.
  • [71] M. A. Silakova, V. Smetanyuk, H. J. Pasman, Model, software for calculation of flammability limits and its validation, Project SAFEKINEX - Deliverable No 19, Delft University of Technology, 2007.
  • [72] D. D. Drysdale, An introduction to fire dynamics, Chichesters Wiley, 1985.
  • [73] R. D. Stull, Fundamentals of fire and explosion, A. I. Ch. E. Monograph Series No 10, New York 1077.
  • [74] D. Gupta, A. W. Date, U. V. Bhandarker, Comparison of Combustion Calculations Using Cantera and Chemkin, Department of Mechanical Engineering, Indian Institute of Technology, Bombay 2005.
  • [75] http://www.Cantera.org/
  • [76] www.safekinex.org/
  • [77] K. Chatrathi, J. Going, Process Safety Progress, vol. 19 (3), pp. 146-153, 2000.
  • [78] S. M. Frolov, V. Y. Basevich, A. A. Belyaev, J. H. Pasman, Detailed reaction mechanism of n-butane oxidation, Delft University of Technology, The Netherlands, 2006.
  • [79] http://www.astm.org
  • [80] http://www.iso.org
  • [81] J. Głowiński, T. Baczyńska, M. Sewerynak, Granice wybuchowości układu H2-NO-N2O pod zwiększonym ciśnieniem, Instytut Technologii Nieorganicznej i Nawozów Mineralnych Politechniki Wrocławskiej, Przemysł Chemiczny, vol. 75 (2), pp. 63-65, 1996.
  • [82] D. S. Burgess, A. L. Furno, J. M. Kuchta, K. E. Mura, Flammability of mixed gases, Report of Investigations RI-8709, 1982.
  • [83] A. Kobiera, J. Kindracki, P. Żydak, P. Wolański, J. Szymczyk, W. Glinka, G. Rarata, Explosion propagation, Pmax, Model demonstration, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Safekinex Workshop, Paris, 2006.
  • [84] J. Warnatz, Hydrocarbon oxidation high-temperature chemistry, Pure Appl. Chem., vol. 72 (11), pp. 2101-2110, 2000.
  • [85] A. Edgerton, J. Powling, The Limits of Flame Propagation at Atmospheric Pressure. II The Influence of Changes in the Physical Properties, Royal Society, vol. 193A, 1948.
  • [86] J. G. Hansel et al, Predicting and Controlling Flammability of Multiple Fuel and Multiple Inert Mixtures, Proceedings of the 25th Annual AIChE Loss Prevention Symposium, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0093-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.