Identyfikatory
Warianty tytułu
Componentwise asymptotic stability and exponential stability of the positive fractional discrete-time linear systems
Języki publikacji
Abstrakty
Podano podstawowe definicje i twierdzenia dotyczące dodatnich układów dyskretnych niecałkowitego rzędu oraz omówiono ich stabilność asymptotyczną. Podano warunki konieczne i wystarczające stabilności asymptotycznej według składowych i stabilności wykładniczej dodatnich układów dyskretnych niecałkowitego rzędu. Przedstawiono przykłady numeryczne ilustrujące problem stabilności asymptotycznej według składowych i stabilności wykładniczej.
In positive systems inputs, state variables and outputs take only non-negative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear systems behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc. Positive linear systems are defined on cones and not on linear spaces. Therefore, the theory of positive systems is more complicated and less advanced. The concept of positive fractional discrete-time linear systems has been introduced in [6] and the reachability and controllability to zero of positive fractional system has been investigated in [10]. In this paper the problem of the componentwise asymptotic stability and exponential stability of the positive fractional systems will be solved. The paper is organized as follows. In section 2 the basic definitions and theorems concerning the positive fractional systems are recalled and their asymptotic stability is discussed. The main result of the paper is presented in section 3 and 4. Necessary and sufficient conditions for the componentwise asymptotic stability and exponential stability of the positive fractional systems are established. The considerations are illustrated by numerical examples in section 5. The algorithm in MATLAB, which allows the test of the componentwise asymptotic stability and exponential stability of the positive fractional systems is presented. How does presented procedure work is step-by step described. In section 6 the relationship between the componentwise asymptotic stability and exponential stability is presented. Concluding remarks and open problems are given in section 7.
Wydawca
Czasopismo
Rocznik
Tom
Strony
414--417
Opis fizyczny
Bibliogr. 24, wzory
Twórcy
autor
autor
- Wydział Elektryczny, Politechnika Białostocka, ul. Wiejska 45D, 15-351 Białystok, kaczorek@isep.pw.edu.pl
Bibliografia
- [1] Busłowicz M.: Stability of linear continuous-time fractional order systems with delays of the retarded type. Bull. Pol. Acad. Sci. Techn., vol. 56, no 4, pp. 319-324, 2008.
- [2] Busłowicz M.: Simple stability conditions for linear positive discrete-time systems with delays. Bull. Pol. Acad. Sci. Techn., vol. 56, no 4, pp. 325-328, 2008.
- [3] Farina L., Rinaldi S.: Positive Linear Systems; Theory and Applications, J. Wiley, New York 2000.
- [4] Kaczorek T.: Positive 1D and 2D Systems, Springer-Verlag, London 2002.
- [5] Kaczorek T.: Asymptotic stability of positive 1D and 2D linear systems, recent Advances in Control and Automation, Acad. Publ. House EXIT, 41-52, 2008.
- [6] Kaczorek T.: Practical stability of positive fractional discrete-time systems, Bull. Pol. Acad. Sci. Techn. Vol. 56, no 4, 313-318, 2008.
- [7] Kaczorek T.: Stabilization of fractional discrete-time linear systems using state-feedback. Proc. Conf. LOGITRANS, April 15-17, Szczyrk 2009.
- [8] Kaczorek T.: Positivity and stabilization of 2D linear systems. Discussiones Mathematicae (w druku), 2009.
- [9] Kaczorek T.: Positivity and stabilization of 2D linear systems with delays, Materiały Konf. MMAR w Międzyzdrojach, 2009.
- [10] Kaczorek T.: Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control, vol. 6, no 4, 2007.
- [11] Oldham K. B., Spanier J.: The Fractional Calculus. New York: Academmic Press, 1974.
- [12] Ortigueira M. D.: Fractional discrete-time linear systems. Proc. of the IEE-ICASSP 97, Munich, Germany, IEEE, New York, vol. 3, pp. 2241-2244.
- [13] Ostalczyk P.: The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst, Sci. vol. 31, no 12, 1551-1561, 2000.
- [14] Ostalczyk P.: Fractional-Order Backward Difference Equivalent Forms Part I - Horner’s Form. Proc. 1-st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, 342-347, 2004.
- [15] Ostalczyk P.: Fractional-Order Backward Difference Equivalent Forms Part II - Polynomial Form. Proc. 1st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, 348-353, 2004.
- [16] Ostalczyk P.: Zarys rachunku różniczkowo-całkowego ułamkowego rzędu. Oficyna Wydawnicza Politechnika Łódzka, 2008.
- [17] Oustaloup A.: Commande CRONE. Paris, Hermés, 1993.
- [18] Oustaloup A.: La dérivation non entiére. Paris: Hermés, 1995.
- [19] Podlubny I.: Fractional Differential Equations. San Diego: Academic Press, 1999.
- [20] Podlubny I.: Geometric and physical interpretation of fractional integration and fractional differentation. Fract. Calc. Appl. Anal. Vol. 5, no 4, 367-386, 2000.
- [21] Podlubny I., Dorcak L., Kostial I.: On fractional derivatives, fractional order systems and PIλDµ-controllers. Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, 4985-4990, 1999.
- [22] Sierociuk D.: Estymacja i sterowanie układów dyskretnych ułamkowego rzędu opisanych równaniami stanu. Praca doktorska na Politechnice Warszawskiej, 2007.
- [23] Sierociuk D., Dzieliński A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci., vol. 16, no 1, 129-140, 2006.
- [24] Vinagre B. M., Monje C. A., Calderon A. J.: Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC’02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0081-0010