Identyfikatory
Warianty tytułu
LMI approach to observer synthesis for linear continuous-time fractional order systems
Języki publikacji
Abstrakty
W pracy rozpatrzono problem syntezy obserwatorów liniowych układów ciągłych niecałkowitego rzędu. Wykorzystując aparat liniowych nierówności macierzowych (LMI) sformułowano warunki oraz podano procedury do wyznaczania macierzy wzmocnień obserwatorów, dla rzędu ? układu: 0 < α < 1 i 1 < α < 2. Rozważania zilustrowano przykładem liczbowym. Obliczenia i symulacje wykonano w środowisku Matlab/Simulink.
Many sophisticated analytical procedures to control system design are based on the assumption that the full state vector is available for measurement. The example of such control procedure is placement of the unstable system eigenvalues. In many systems of practical importance, however, the entire state vector is not available for measurement. In some systems, for example, measurements may require the use of costly measurement devices and it may be unreasonable to measure all state variables. An auxiliary dynamical system, which reconstructs the state vector, is known as a full-order or an identity observer, and is coupled to the original system through the available system inputs and outputs [14]. The paper presents a problem of synthesis of full-order observers for fractional continuous-time linear systems. It has been shown that this problem can be formulated and solved by the use of linear matrix inequalities (LMI) methods [15]. Two cases of fractional order i.e. 0 < α < 1 and 1 < α < 2 of the system (1) have been considered. Necessary and sufficient conditions (Theorem 1 and 2) for solvability of the problem as well as two procedures (Procedure 1 and 2) for computation of a gain matrix L of asymptotic stable observer (2) have been given. The proposed approach is illustrated with a practical example. Numerical calculations have been performed in the Matlab package and accompanied by public domain software: SeDuMi solver and YALMIP parser. The LMI approach to observer synthesis for fractional continuous-time linear systems has not been considered as yet.
Wydawca
Czasopismo
Rocznik
Tom
Strony
392--395
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., wzory
Twórcy
autor
- Wydział Elektryczny, Politechnika Białostocka, ul. Wiejska 45D, 15-351 Białystok, rafko@pb.edu.pl
Bibliografia
- [1] Miller K. S., Ross B.: An introduction to the fractional calculus and fractional differential equations. Willey, New York 1993.
- [2] Ostalczyk P.: Zarys rachunku różniczkowo-całkowego ułamkowych rzędów. Teoria i zastosowania w automatyce. Wyd. Politechniki Łódzkiej, 2008.
- [3] Kaczorek T.: Wybrane zagadnienia teorii układów niecałkowitego rzędu. Wyd. Politechniki Białostockiej, 2009.
- [4] Busłowicz M.: Komputerowe metody badania stabilności liniowych ciągłych układów dynamicznych niecałkowitego rzędu. Mat. V Ogólnopolskiej Konf. Naukowo-Technicznej „Modelowanie i Symulacja” (MIS’08), Kościelisko, 2008, s. 201-204.
- [5] Busłowicz M.: Stability analysis of linear continuous-time fractional systems of commensurate order. Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 3, no 1, 2009, pp. 16-21.
- [6] Kaczorek T.: Reachability of fractional positive continuous-time linear systems. Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 3, no 1, 2009, pp. 3-7.
- [7] Kaczorek T.: Realization problem for fractional continuous-time systems. Proc. 16th Mediterranean Conf. on Control and Auto-mation, Palermo, 2008, vol. 2, pp. 226-235.
- [8] Dzieliński A., Sierociuk D.: Controllability and observability of fractional order discrete state-space systems. Proc. 13th IEEE IFAC Intrn. Conf. Methods and Models in Automation and Robotics, 27-30 Aug. 2007, Szczecin, Poland, IEEE Conf. No 12459.
- [9] Dzieliński A., Sierociuk D.: Observer for discrete fractional order state-space systems. 2nd IFAC Workshop on Fractional Diffrentation and its Applications, IFAC FDA’06, pp. 524-529, Porto, Portugal, 19-21 July, 2006.
- [10] Kociszewski R.: Obserwatory dodatnich liniowych układów dyskretnych ułamkowego rzędu, Pomiary Automatyka Robotyka, no 2, 2009 (CD-ROM).
- [11] Momamni S., El-Khazali R.: Stability analysis of composite fractional systems. Proc. Intelligent Systems and Control, Tampa, Florida, November 19-22, 2001.
- [12] Moze M., Sabatier J., Oustaloup A.: LMI characterization of fractional systems stability. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, pp. 419-434, Springer 2007.
- [13] Xing S. Y., Lu J. G.: Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: LMI approach. Chaos, Solitons and Fractals, 2009 (w druku).
- [14] Luenberger D. G.: An introduction to observers. IEEE Trans. on Autom. Control, vol. 16, no 6, 1971, pp. 596-602.
- [15] Boyd S., ElGhaoui L., Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. SIAM 1994.
- [16] Chilai M., Gahinet P.: H∞ design with pole placement constraint: An LMI approach. IEEE Trans. Autom. Contr. No 41, 1996, pp. 358-367.
- [17] Kaczorek T.: Teoria sterowania i systemów. PWN, Warszawa 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0081-0005