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Abstract

Linear electrical circuits composed of resistors, inductances, capacitances
and voltage (current) sources with state-feedbacks are addressed. It is
shown that for large class of nonpositive electrical circuits it is possible to
choose gain matrices of the state-feedbacks so that the closed-loop systems
are positive and have some desired dynamical properties. Sufficient
conditions for nonnegativity of B matrices of linear electrical circuits are
established. Considerations are illustrated by three examples of linear
electrical circuits.

Keywords: positive, linear, electrical, circuit, state-feedback, gain matrix,
dynamical property.

Obwody elektryczne ze sprzezeniami
zwrotnymi od wektora stanu o pozadanych
wilasciwosciach dynamicznych

Streszczenie

W pracy sa rozpatrywane liniowe obwody elektryczne zlozone
z rezystancji, pojemnosci, indukcyjnosci i zrdodet napigcia (pradu).
Wykazano, ze dla szerokiej klasy niedodatnich obwodéw elektrycznych
mozna dobra¢ macierz wzmocnien statycznych sprzezen zwrotnych od
wektora stanu tak, aby uklad zamknigty byl dodatni i miatl pozadane
wlasciwosci dynamiczne. Podano warunki wystarczajace nieujemnosci
elementéw macierzy B liniowych obwodéw elektrycznych. Rozwazania
ogolne zostaty zilustrowane przyktadami obwodow elektrycznych.

Stowa kluczowe: dodatni, liniowy, elektryczny, obwdd, sprzgzenie
zwrotne od stanu, macierz wzmocnien.

1. Introduction

It is well-known [1, 15, 16, 23, 24] that linear electrical circuits
composed of resistances, inductances and voltage (current)
sources or of resistances, capacitances and voltage (current)
sources are examples of linear positive systems. A dynamical
system is called positive if its trajectory starting from any
nonnegative initial states remains forever in the positive orthant
for all nonnegative inputs. An overview of state of the art in
positive systems theory is given in the monographs [17, 20].
Electrical circuits composed of resistances, capacitances,
inductances and voltage (current) sources are not in general case
positive systems but by suitable choice of gain matrices of state-
feedbacks the closed-loop circuits can be positive with desired
dynamical properties [22].

Stability of linear continuous-time fractional systems with
delays of retarded type has been investigated in [13] and positive
linear discrete-time systems with delays in [14]. Different
problems of analysis of electrical circuits have been investigated
by Bustowicz in [2-12].

In this paper it will be shown that for large class of nonpositive
electrical circuits it is possible to choose the gain matrices of state-
feedbacks so that the closed-loop circuits are positive and have
some desired dynamical properties.

The paper is organized as follows. Some preliminaries
concerning linear positive systems and nilpotent matrices are
recalled in section 2. Problem formulation is given in section 3.
Problem solution and electrical circuits with desired dynamical
properties are presented in section 4. Concluding remarks are
given in section 5.Some lemmas concerning nilpotent matrices are
given in appendix A. Sufficient conditions for nonnegativity of
matrices B of linear electrical circuits are established in appendix B.

2. Preliminaries

Let ™" be the set of nxm real matrices. The set nxm
matrices with nonnegative entries will be denoted by R} and
R" =R, The set of nonnegative integers will be denoted by Z..

Consider the linear continuous-time system

X =Ax+ Bu (1)

where x=x(t)eR" is the state vector, u=u(t)eR" is input

vector and 4 € R™", Be R™".

Definition 1. The system (1) is called positive if and only if
x(t) e R, t=0 for any initial conditions x, = x(0) e R}, ¢>0.

Theorem 1. [20, 17] The system (1) is positive if and only if
AeM, and BeR™" )

where M, is the set of nxn Metzler matrices, i.e. real matrices
with nonnegative off diagonal entries.

Definition 2. The positive system (1) is called asymptotically
stable if and only if
limx(¢) =0 forall x, e R 3)

t—>w©

Theorem 2. [20, 17] The positive system (1) is asymptotically
stable if and only if its characteristic polynomial

det[/,s — A]=5" +a,,_]s'“l +..+as+a, 4)
has all positive coefficients, i.e. g, >0, k=0,1,..,n—1.

Theorem 3. [20, 17] The positive system (1) is unstable if at
least one diagonal entry of the matrix A=[a;] is positive, ie.

a; >0 for some ie(1,2...,n).

Definition 3. A real matrix 4 e R™" is called nilpotent if there

exist a natural number v<n such that 4" #0 and 4" =0. The
natural number v is called the nilpotency index of the matrix 4.
It is well-known [19] that the strictly upper triangular matrices

nxn

and the strictly lower triangular matrices A4 €% are nilpotent
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matrices with nilpotency indices v <n . These matrices have the
characteristic polynomials of the form

det[I, A — A]= A" )

and all their eigenvalues are equal to zero.
In appendix A some lemmas concerning nilpotent matrices and
the nilpotency indices are presented.

3. Problem formulation

It is well-known [18, 21, 23] that any linear electrical circuits
consisting of resistors, capacitors, coils and voltage (current)
sources can be described by the state equation

X = Ax+ Be (6)

where xeR" is the state vector, eeR"™ is the input vector,
AeR™ and BeR™".

As state variables xi, x,,...,x, (the components of x) usually the
currents in the coils and voltages across the capacitors are chosen.
The components of the input vector e are the source voltages or
source currents.

Consider the electrical circuit (6) with the state-feedback

e=Kx )
where K € R™” is gain matrix.

Remark 1. Note that electrical circuits with state-feedbacks (7)
are equivalent to linear circuits with controlled voltage (current)
sources.

Substitution of (7) into (6) yields

X¥=Ax (3)

where
A.=A+BK 9

We are looking for a gain matrix such that the closed-loop
system (8) has desired dynamics, for example
1. the matrix A, has prescribed eigenvalues in the left half of the
complex plane
2. the matrix 4, has desired nilpotency index v=2

4. Electrical circuits with desired dynamical
properties

It is assumed that the matrix B in (9) has nonnegative entries
and the matrix 4 may not be a Metzler matrix.

Let 4. be a Metzler matrix with desired dynamical properties. If
for given A, the following condition is met

rank B = rank[B, A, — A] (10)

then the equation
BK=4 -4 (11)

has a solution K.
In this case we have the following theorem.

Theorem 4. If the condition (10) is satisfied then there exists a
gain matrix K such that the closed-loop system is positive with
desired dynamical properties.
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Proof. If for a chosen Metzler matrix A, with desired dynamical
properties the condition (10) is satisfied then by Kronecker-
Cappely theorem the equation (11) has a solution K such that the
closed-loop matrix is equal to 4..m

Theorem 5. Let the condition (10) for a matrix 4. with
nilpotency index v =2 be satisfied. Then there exists a gain
matrix K such that the state variables of the closed-loop circuit are
linear functions of time for any given initial conditions x(0) = x,.

Proof. If the condition (10) is satisfied then the equation (11)
has a solution K for given matrices 4, 4. and B. If the matrix A4,
has nilpotency index v =2 then

A =0 for k=2,3,.. (12)
and this implies
() = ™'y, = i(Af’)k X, = (I, + A.0)x (13)
~ k' 0 n c 0

In this case state variables of the closed-loop system are linear
functions of time for any initial conditions x,.m

Example 1. Consider the electrical circuit shown on Fig. 1 with
given resistances R;,R, capacity C, inductances L,,L, and

voltage sources e, e,

Fig. 1.  Electrical circuit nol
Rys. 1. Obwdd elektryczny nrl

Using the Kirchhoff’s laws we may write the equations

di
e =Ri+L—+u 14a
1 TR (142)
di
e, =Ry, +L,—2>+u 14b
2 ¥y (14b)
du
C—=i+i 14c
otk (14c)

The equations (14) can be written in the form

d ) i1_
. . €
—li, |=4A|i, |+B 15
ik 2 Lj (15)
u u |
where
Ry L 1 0
L L Z
A=| 0 R 1 , B=|0 1 (15a)
L, L, T
1 b
— — 0 0 0
L¢C C J
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The following two cases will be considered.
In case 1 we choose the matrix 4, of the form

0 0 0

A4=/0 0 0 (16)
1,
c C

It is easy to check that the condition (10) is satisfied and the
equation (11) takes the form

Lo B L
fl L L
0 1|[K=|0 K 1 17)
fz L, L,
0 0 0 0 0
and its solution is
R 0 1
K = (18)
0 R, 1
From (13) we have
i(?) 1 0 0}l i
L) |=| 0 L 0|liy|= Iy (19)
u(®) lt lz 1 |LHo u0+"—°t+’2—°t
c C
where i, =§(0), iy =i,(0), uy =u(0).
In case 2 we choose the matrix 4, of the form
-4 0 0
0o -4, 0 (4 >0, k=12,3) (20)
1 1
c C %

It is easy to see that in this case the condition (10) is not
satisfied and we are not able assign the eigenvalues of 4. in
desired positions by suitable choice of the gain matrix K since the
third row of the matrix B is zero row.

Example 2. Consider the electrical circuit shown on Fig. 2 with
given resistances R,,R, capacitances C;,C,, inductance L and

voltage sources e, e,,e;.

Fig.2. Electrical circuit no 2
Rys. 2. Obwdd elektryczny nr 2

Using the Kirchhoff’s laws we may write the equations

di
e +tey=L—+u

du du
=R|-i+C—-C —2]+ 21
) 1(’ T 2 U 21

du du du
e; =R,C,—2+u, +R|i—-C,—L+C Jj
Rl A AR 1( " 2

The equations (21) can be written in the form

d i i 2
—|u, |=A|u, |+B|e, (22a)
dt
Uy Uy %
where
0o L 0 Ly 1
L L L
ao| L RER L RER (22b)
C, CRR, CR, CRR, CR,
0 - 1 1 0 1 1
CZRZ CZRZ CZRZ CZRZ

Note that the matrix 4 is not a Metzler one since it has some
negative off-diagonal entries and the matrix B has nonnegative
entries. Therefore, the electrical circuit is not a positive system.

Let

e i
e, |=K|u (23)
4 U

where K € R¥ is a gain matrix.
Substitution of (23) into (22a) yields,

i i

d
—|u |=A.|u 24
dt 1 c 1 ( )
Uy Uy
where
A.=A+BK (25)

We are looking for a gain matrix K such that the closed-loop
matrix 4. is a Metzler matrix with nilpotency index v =2 of the
form [11]

0 g O
4.=(0 0 0 (26)
0 a O

where a,,a, are some positive real parameters.

In this case the matrix B is nonsingular and from (25) we obtain
K=B"(4,-4) 27)

In particular case for (26) we have
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oo Il o a4+l o
L L L
colo RtR 1 1 R+R 1|
GRR, CR, G CGRR, CR, (28)
0 ! ! 0 a+ 71 !
L CZRZ C2R2 C2R2 CZRZ
[-R, aL+1-a,RC,—a,C,R, -1
=|-R, 1-a,R,C, 0
LR (R +Ry))C,a, 1
and
i(t) 1 at 0] g iy + aguy ot
w() (=10 1 0fju,|= U (29)
uy (1) 0 ayt 1] uy Uy + Ayl ot

where iy =i(0), u,y =u,4(0), Uy, =1,,(0).

5. Concluding remarks

Linear electrical circuits composed of resistances, inductances,
capacitances and voltage (current) sources with state-feedbacks
have been addressed. It has been shown that for nonpositive
electrical circuits with nonnegative B matrices if the condition
(10) is met then it is possible to find gain matrices of the state-
feedback such that the closed-loop circuits have some desired
dynamical properties (Theorem 4). If for a matrix 4. with
nilpotency index v =2 the condition (10) is satisfied then there
exists a gain matrix K such that the state-variables of the closed-
loop circuit are linear functions of time for any given initial
conditions (Theorem 5). In Appendix A some lemmas concerning
nilpotent matrices have been given and in appendix B sufficient
conditions for nonnegativity of B matrices of linear electrical
circuits have been established. The main result of the paper have
been illustrated by linear electrical circuits.

Appendix A
Nilpotent matrices

Lemma A1l. Matrices of the form

0 a, ... a,, 0
0o 0 .. 0 O
A= i : Dlemm (A1)
0o 0 .. 0 O
0 a, ... a,, 0

have the nilpotency index v=2 for any values of the entries
ay2,...041 .15 Apos...dy, and the characteristic polynomials of the
form

det[I A — A]= A" (A2)

Proof. Using (A1) it is easy to check that 4> =0 and

-4 ... —a,; 0
0 2 .. 0 0
det[I A—A]=det| 1 .. : =,".m (A3)
0 0 .. A 0
0 —-a,, ... —a,,,
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Lemma A2. Matrices of the form

0 4
A= |:0 (1)2:| c ERZnXZn (A4)

have the nilpotency index v =2 and the characteristic polynomial
of the form

det[1,,1— A]= A*" (A5)
for any submatrices 4,, € R"".

Proof. Using (A4) it is easy to verify that 4> =0 and

0 1A

n

lnﬂ’ _Al2 2
det[7,,A — A] = det =" m (A6)

From the well-known property of the transposition (denoted by
upper index T) of the matrix 4, (4*)" =(4")* for k=1,2,... we
have the following remark.

Remark Al. The transpose matrix 47 has a nilpotency index v
if and only if the matrix 4 has the same nilpotency index v.

Lemma A3. A diagonal matrix 4 with at least one nonzero
entry is not the nilpotent matrix.

Proof. This follows immediately from the relation
A* = (diag[ay,...,a,])" = diag[af,...,ak1#0 (A7)

for k =1,2,... if at least one from the entries a,,...,q, are

nonzero.m

Lemma A4. Nonnegative matrix 4 R7” with at least one

nonzero diagonal entry is not nilpotent matrix.

Proof. Let decompose the matrix A as the sum of the diagonal
matrix D and the nonnegative matrix B with zero diagonal entries.
Then

A*=(D+ B =D" + BD* '+ .+ B* for k=1,2,... (A8)

If the matrix 4 has at least one nonzero diagonal entry then
D#0 and by Lemma A3 D¥ %0 for k=1,2,.... From (A8) we

have 4*#0 for k=1,2,... since D*#0 and the remaining
matrices are nonnegative.m

Appendix B
Electrical circuits with nonnegative B matrices

Theorem B1. Entries of B matrices of electrical circuits
composed of resistances, capacitances and voltage sources are
positive if directions of currents caused separately by each voltage
source are consistent in all capacitors.

Proof. Substituting »;, =0 for i=1,..,n and e; =1, ¢, =0 for

i#j, j=1,..,m to the equation

duk n m
?:Za,ﬂ.u[ +Y bee,, k=l..r (B1)

i=1 =1
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we obtain
du,

=b., j=1...m; k=1,.,n B2
~=by j (B2)

Note that at =0+ the capacitors are short circuits and the
current ic, (0+) caused by voltage source e; =1 is equal to

c, =i, (04) k=L.n (B3)

=0+
From (B2) and (B3) we have
1. .
by :C—zck O+), k=1..,nj=1L...m (B4)
k

Therefore, to find the coefficient bk,. we have to compute the

current in the short circuit kth capacitor caused by the jth voltage
source e, =1, j=1..,m. If the directions of currents caused

separately by each voltage source are consistent then the entries of
the matrix B are positive. m

Example B1. Consider the electrical circuit shown on Fig. B1
with given resistances R;,R,,R;, capacitances C|,C, and voltage

sources e, e,.

Ry R,

C lu| R;

€ €

Fig. B1. Electrical circuit no3
Rys. B1. Obwod elektryczny nr 3

Using the Kirchhoff’s laws we may write the equations

e =u + (R +R3)C1%_R3C2%

dt dt (B5)
0y =u,+ (R, + R)C, M2 _p.c P
) = Uy 2+ 15)0— G

which can be written in the form
—d [ul}:A{ul}rl{el} (B6)
dt| u, U, e,

-1
B 4o {(R1 +R)C,  -RC, } _
—R;C (R, + R;)C,
_ 1 (R + Ry)C, RC,y
ARG R+R)G
A=[R/(R, + Ry)+ R,R;]C\C,

where

(B7)

From (B7) it follows that the matrix B has positive entries and
the matrix 4 has negative entries. Note that in the electrical circuit
shown on Fig. B1 the directions of currents in the short circuit
capacitors caused separately by the voltage sources ¢ =1 and
e, =1 are consistent. Therefore, the entries of the matrix B given

by (B7) are positive.

Theorem B1 can be extended for electrical circuits composed of
resistances, capacitances, inductances and voltage (current)
sources as follows.

Theorem B2. Entries of B matrices of electrical circuits
composed of resistances, capacitances and voltage (current)
sources are nonnegative if the directions of currents and the
directions of voltages on gaps caused separately by each voltage
source are consistent in all capacitors and on all coils.

Proof. The idea of the proof is similar. In this case instead of
the equation (B1) we have

d. r n m
% =D agi; + Y au+Y bye, k=l..r  (BSa)
! =1 i=r+l I=1

and

% = Za,g.ij + Z ayu; +Zbk,el, k=r+1,..n (B8b)
j=1 I=1

i=r+l1

Substituting i, =0, j=1,...,r, #;=0, i=r+1,..,n and ¢ =1

for /=p and ¢ =0 for / # p, from (B8a) we obtain

di,
—+*=b_, k=1..r; p=1,..m B9
dt kp P ( )

Note that at # =0+ the capacitors are short circuit and the coils
are gaps. The voltage across the kth gap caused by the voltage
source e, =1 is equal to

L dic

< =u, (0+), k=1L..r (B10)

=0+

From (B9) and (B10) we have

1
by = (04, K =1ors p =l (B11)
k

Therefore, to find the coefficient by, we have to compute the
voltage on the kth gap caused by the voltage source e, =1. If the

directions of voltages on the gaps caused separately by each
voltage source are consisted then the entries of the matrix B are
nonnegative. The remaining part of the proof is similar to the
proof of Theorem B1.m

The paper was supported by Ministry of Science and Higher Education in Poland
under work S/WE/1/06.

6. References

[1] Antsaklis P. J., Michel N:, Linear systems, McGrow-Hill, New York
1997.

[2] Bustowicz M.: Computational methods for frequency domain analysis
of linear electrical circuits with uncertain parameters. Proc. XXVI Int.
Conf. on Fundamentals of Electrotechnics and Circuit Theory, vol. 11,
pp- 267-270, Gliwice-Niedzica 2003 (in Polish).

[3] Bustowicz M.: Applications of interval analysis in theory of electrical
circuits. Proc. XXVII Int. Conf. on Fundamentals of Electrotechnics
and Circuit Theory, vol. I, Gliwice-Niedzica 2004 (in Polish).

[4] Bustowicz M.: Stabilization of LC ladder network by positive delayed
feedback from output. Proc. XXVII Int. Conf. on Fundamentals of
Electrotechnics and Circuit Theory, vol. II, pp. 265-268, Gliwice-
Niedzica 2004 (in Polish).



376

[5] Bustowicz M.: Frequency responses of second order RLC series
circuits with uncertain parameters. In R. Nawrowski (Ed.): Computer
Applications in Electrical Engineering, Published by Institute of
Industrial Electrical Engineering, Poznan University of Technology,
pp. 1-15, Poznan 2004.

[6] Bustowicz M.: Frequency domain analysis of long electric line with
uncertain parameters. Proc. XXVII Int. Conf. on Fundamentals of
Electrotechnics and Circuit Theory, vol II, pp. 209-212, Gliwice-
Niedzica 2004 (in Polish).

[7] Bustowicz M.: Application of classical methods of interval analysis to
determination of frequency responses of series electrical RLC circuits
of second order with uncertain parameters. Proc. X Conference
Computer Applications in Electrical Engineering, pp. 127-128,
Poznan 2005 (in Polish).

[8] Bustowicz M., Analysis of steady-state in homogeneous long electric
line with uncertain parameters with sinusoidal input. Proc. XXVIII
Int. Conf. on Fundamentals of Electrotechnics and and Circuit Theory,
vol. 2, pp. 199-202, Gliwice-Ustron 2005 (in Polish).

[9] Bustowicz M., Analysis of long electric line without losses with
uncertain parameters. Proc. XXVIII Int. Conf. on Fundamentals of
Electrotechnics and Circuit Theory, vol. 2, pp. 191-194, Gliwice-
Ustron 2005 (in Polish).

[10]Bustowicz M.: Robust stability of LC ladder network with positive
delayed feedback from output. Proc. XXIX Int. Conf. on Fundamentals
of Electrotechnics and Circuit Theory, vol. II, pp. 309-312, Gliwice-
Ustron 2006 (in Polish).

[11]Bustowicz M.: Robust stability analysis of linear electrical circuits
with uncertain parameters. Przeglad Elektrotechniczny, nr 11/2006,
pp. 112-116 (in Polish).

[12]Bustowicz M.: Analysis of second order parallel RLC circuit with
interval parameters with sinusoidal input. Proc. XXX Int. Conf. on
Fundamentals of Electrotechnics and Circuit Theory, pp. 167-168,
Gliwice-Ustron 2007.

PAK vol. 56, nr 5/2010

[13]Bustowicz M.: Stability of linear continuous-time fractional order
systems with delays of the retarded type. Bull. Pol. Acad. Sci. Techn.,
vol. 56, no. 4, pp. 319-324, 2008.

[14]Bustowicz M.: Simple stability conditions for linear positive discrete-
time systems with delays. Bull. Pol. Acad. Sci. Techn., vol. 56, no. 4,
pp- 325-328, 2008.

[15]Chen C.H.: Linear systems theory and design, Oxford University
Press, New York 1999.

[16]Cholewicki T.: Analysis of electrical circuits, WNT Warszawa 1962
(in Polish).

[17]Farina L., Rinaldi S.: Positive Linear Systems; Theory and
Applications, J. Wiley, New York 2000.

[18]Kaczorek T.: On formulation of differential equations in normal form
describing linear electrical circuits, Archiwum Elektrotechniki vol. 13,
z.3 1964 (in Polish).

[19]Kaczorek T.: Vectors and matrices in automation and electrotechnics,
WNT Warszawa 1998 (in Polish).

[20]Kaczorek T.: Positive 1D and 2D Systems, Springer -Verlag, London
2001.

[21]Kaczorek T.: Polynomial and rational matrices matrices. Applications
in Dynamical systems Theory, Springer-Verlag, London 2007.

[22]Kaczorek T.: Linear dependence on time of state variables in
electrical circuits with state feedbacks, Przeglad Elektrotechniczny,
2010.

[23]Kaczorek T.: Theory of control systems, PWN Warszawa 1999 (in
Polish).

[24]Zak S.: Systems and control, Oxford University Press, New York
2003.

otrzymano / received: 01.02.2010

przyjeto do druku / accepted: 12.04.2010 artykul recenzowany

INFORMACJE

WYDAWNICTWO

Pomiary Automatyka Kontrola

MEASUREMENT AUTOMATION AND MONITORING

specjalizuje sie w wydawaniu czasopisma i ksigzek popularno-naukowych
w dziedzinie automatyki i pomiarow

Osoby i firmy przemystowe zainteresowane wspétpracg z Wydawnictwem
proszone sg o kontakt bezposredni dla uscislenia szczegotdéw wspotpracy

Wydawnictwo PAK
00-050 Warszawa
ul. Swietokrzyska 14A

tel./fax 22 827 25 40

Redakcja PAK
44-100 Gliwice
ul. Akademicka 10, p. 30b
tel./fax 32 237 19 45
e-mail: wydawnictwo@pak.info.pl

www.pak.info.pl



