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Abstract

The paper presents the stability problem of control systems composed of
a fractional-order PI controller and an inertial plant of a fractional order
with time delay. A simple and efficient computational method for
determining stability regions in the controller and plant parameters space
for specified gain and phase margins requirements is given. If these
regions are known tuning process of the fractional-order PI controller can
be made. The method proposed is based on the classical D-partition
method.

Keywords: PID controllers, fractional system, stability, delay, D-partition
method.

Stabilizacja uktadéw inercyjnych z op6znieniem
za pomoc3 regulatora Pl utamkowego rzedu

Streszczenie

W pracy rozpatrzono problem stabilno$ci uktadéw regulacji automatycznej
ztozonych z regulatora PI ulamkowego rzedu oraz obiektu inercyjnego
utamkowego rzedu z opodznieniem. Rozpatrywany uklad regulacji
automatycznej jest stabilny, gdy jego quasi-wielomian charakterystyczny
utamkowego stopnia (3) jest stabilny. tzn. wszystkie jego zera maja
ujemne czgsci rzeczywiste. Wykorzystujac klasyczna metodg podziatu D
podano prosta analityczno-komputerowa metod¢ wyznaczania obszaréw
stabilnosci na plaszczyznie parametrow modelu obiektu regulacji (1)
i regulatora (2). Wyznaczono analityczne zaleznosci okreslajace granice
obszarow stabilnosci w przestrzeni parametrow (X, Y), gdzie X=Kk,,
Y =Kk/h". Obszar stabilnoéci lezy pomiedzy granica zer rzeczywistych
Y=0 i granicq zer zespolonych o opisie parametrycznym (10), (11).
Otrzymane opisy granic stabilnosci umozliwiaja takze wyznaczenie
obszarow stabilnosci dla zadanego zapasu modutu A4 i fazy ¢. Przy
wyznaczaniu obszarow stabilnosci dla okre§lonego zapasu modulu A4
nalezy przyja¢ ¢=0, natomiast dla okreslonego zapasu fazy ¢ nalezy
przyja¢ 4 = 1. Na podstawie znajomosci tych obszaréw mozna w prosty
sposob okresli¢ nastawy regulatora, dla ktoérych rozpatrywany uktad
regulacji  charakteryzuje si¢  okreslonymi zapasami stabilnosci.
Przedstawiony przyklad potwierdza rezultat otrzymany na podstawie
metody podziatu D, ze punkt z wyznaczonego obszaru stabilnosci (rys. 3)
zapewnia okreslone wartosci zapasu fazy.

Stowa Kkluczowe: regulator PID, uktad utamkowego rzedu, stabilnosé,
op6znienie, metoda podziatu D.

1. Introduction

Since they have a simple structure, Proportional - Integral -
Derivative (PID) controllers are widely applied. PID-control has
been the subject of many publications (see, e.g. [1-5]). Many
methods of tuning PID controllers for satisfactory behaviour have
been proposed in the literature [3]. These methods are based on
the mathematical description of the process. The first order-plant
with time delay is the most frequently used model for tuning PID
controller [1, 3].

In recent years, considerable attention has been paid to control
systems whose processes and/or controllers are of a fractional
order (see, e.g. [6-8]). The fractional PID controllers, namely
PI'D* controllers, including an integrator of a A order and
a differentiator of a x order were proposed in [8]. Several design
methods of tuning the PI*’D* controllers for systems without time
delay have been presented [9-11]. It has been shown that the
PI*D* controller which has five degrees of freedom enhances the
system control performance when used for control systems with
integer order plants and fractional order plants. A computation
method of stabilizing fractional-order PI“D* controllers for
fractional-order time delay systems is presented in [12].

In the paper [13] a simple method for determining the stability
region in the parameter space of an inertial plant of a fractional
order with time delay and a fractional-order PI controller is given.

This work extends the means of obtaining stability regions for
specified gain and phase margin requirements. Using this region,
a very fast and simple way of calculating the stabilising values of
PI* controllers is obtained.

2. Problem formulation

Consider the feedback control system shown in Fig. 1 in which
the process to be controlled is described by an inertial plant with
time delay

—sh
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where K, T, h are positive real numbers and the order « can be
integer (= 1) or fractional with 0 < o < 1.

Let the controller C(s) be the fractional PI controller described
by the transfer function [8]

C(s)=k, +£, 2)
s

where k, and k; denote the proportional and integral gains of the
controller and A is the fractional order of the integrator (the order
may assume positive real noninteger values). Clearly, on selecting
A =1, aclassical PI controller can be obtained.

A o C(s) o] G(s) 2w

Fig. 1. Feedback control system structure
Rys. 1. Rozpatrywana struktura uktadu regulacji automatycznej

The main path of control includes the gain-phase margin tester
Aexp(—j¢@), where A and ¢ are gain margin and phase margin,
respectively (Fig.1). This tester does not exist in the real control
system, it is only used for tuning the controller. A system may be
designed to have specified gain and phase margins. In typical
control systems the phase margin is from 30° to 60° whereas the gain
margin is from 5dB to 10dB. Gain and phase margins are measures of
relative stability for a feedback system, though frequently only the
phase margin is used rather than both margins. The phase margin
is closely related to transient response, i.e. overshoot.

The characteristic function of the closed-loop system with plant
(1), controller (2) and the gain-phase margin tester is given by
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w(s) = Kde ™/ (k ,s* +k)e™" +(1+Ts%)s™. 3)

The closed-loop system in Fig. 1 is said to be bounded-input
bounded-output stable if and only if all the zeros of the
characteristic function (3) have negative real parts. It is noted that
(3) is a quasi-polynomial which has an infinite number of zeros.
This makes the problem of analysing the stability of the closed-
loop system difficult. There is no general algebraic methods
available in the literature for the stability test of quasi-
polynomials. The next problem of synthesis of the closed-loop
system is how to choose such a fractional order A of the integrator
that the closed-loop system will be stable and characterized by
specified gain and phase margins.

The main aim of the paper is to give the method for determining
the stability region in the parameters space for specified gain and
phase margins requirements.

3. Main Result

On multiplying quasi-polynomial (3) by exp(sh) we obtain
a new quasi-polynomial in the form

w(s) =K (k,s* +k)Ade™? +5*(1+Ts%)e™, 4)

which has exactly the same zeros as quasi-polynomial (3).
Substituting z=sh in quasi-polynomial (4) after transformations
we obtain the quasi-polynomial

w(z)=(Xz* +Y)Ae /? + 24 (1+ pz%)e?, )

where X =Kk, ¥ =Kkh*, p=T/h".

Using the D-partition method [2] the asymptotic stability region
in the parameter plane (X, Y) may be determined and the
parameters can be specified. For 4 =1 and ¢=0, the stability
boundaries are determined.The plane (X, Y) is decomposed by the
boundaries of D-partition into finite number regions D(k). Any
point in D(k) corresponds to such values of X and Y that quasi-
polynomial (5) has exactly k zeros with positive real parts. The
region D(0), if exists, is the stability region of quasi-polynomial
(5). The D-partition boundaries are curves on which each point
corresponds to quasi-polynomial (5) having zeros on the
imaginary axis. It may be the real zero boundary or the complex
zero boundary. It is easy to see that quasi-polynomial (5) has zero
z=0 if Y=0 (the real zero boundary). The complex zero
boundary corresponds to the pure imaginary zeros of (5). We
obtain this boundary by solving the equation

w(jo) =[X(jo)y* +Y]4e™? +(jo)*[1+ p(jw)*]e’” =0, (6)

which we get by substituting z=j® in quasi-polynomial (5) and
equating to 0. The term of /* which is required for equation (6) can

be expressed by
) w ..
= —A |+ =1 7
J cos[2 j ]sm(2 j )

Using (7) the complex equation (6) can be rewritten as a set of
real equations in the form
Re[w(jw)] =0, ®

Im[w(j@)]=0, ©

where Re[w(jw)] and Im[w(j@)] denote the real and the imaginary
parts of (6), respectively.
Finally, by solving the equations (8) and (9) we get
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X=_—1[pwa sin(%(/l+a)+a}+¢J+sin[%ﬂ+w+¢H , (10)
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2

Y :;{pwﬂﬂl Siﬂ[la + a)+¢j+ wl Sil’l(a)+ ¢):| > (1 1)
Asin[lij 2

Equations (10) and (11) determine the complex zero boundary
in plane (X, Y). The real zero boundary and the complex zero
boundary for @ >0 decompose plane (X, ¥) into regions D(k).
The stability region D(0) is chosen by testing an arbitrary point
from each region and checking the stability of the quasi-
polynomial (5) using the methods proposed in [14].

In the paper [13] only the stability region in the parameter space
of quasi-polynomial (5) was determined. The influence of the value
of the plant parameters on the stability regions was analysed. The use
of the fractional order « of a plant causes an increase in the stability
regions. The increasing value of p results in larger stability regions.

To determine the complex zero boundary for a given value of
gain margin 4 of the control system, we should set ¢=0 in (10)
and (11). On the other hand by setting 4 =1 in (10) and (11), we
can obtain the boundary for a given phase margin ¢.

The stability regions of quasi-polynomial (5) for p=4, a=1,
A=1, $=30° and different values of A are shown in Fig. 2. The
figure shows that for 4 <1 the stability regions are larger than for
A= 1. An increase in the value of 1 to over one initially results in
an increase in the stability region after which it begins to decrease.
The value of 4 at which the stability region disappears is 4 =2.

— o~

Fig.2.  Stability regions for quasi-polynomial (5) forp =4, a=1,4=1, ¢=30°
and different values of A

Rys. 2. Obszary stabilno$ci quasi-wielomianu (5) wyznaczone dla kilku wartosci 4
przyp=4,a=1,4=1, $=30°

Fig. 3.  Stability regions for quasi-polynomial (5) for A=0.8,p=4, a=1, 4=1
and different values of ¢

Rys. 3. Obszary stabilnosci quasi-wielomianu (5) wyznaczone dla kilku wartosci ¢
przy A=08,p=4,a=1, A=1
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Fig. 3 shows the stability regions of quasi-polynomial (5) for
A1=08, p=4, a=1, A=1 and different values of ¢. For
example, any point from the region limited by the line Y= 0 and
the curve corresponds to ¢ = 60° provides the phase margin of this
system greater than 60°.

4. Example

Consider the feedback control system shown in Fig. 1 in which
the process to be controlled is described by transfer function (1)
where K=1,T=2, a=1,h=0.5.

In the example we have p = T/ h* = 4. Fig. 3 shows the stability
regions of quasi-polynomial (5) for 1=0.8, p=4 and different
values of ¢. Assuming the value of ¢, e.g. ¢=60°, the stability
region is limited by the line Y= 0 and the curve corresponds to
¢=60°. Choosing an arbitrary point from this region, e.g. X=1,
Y=0.4 (point 1 in Fig. 3), we get Kk,=1, Kki*=0.4. By
computation based on the above expressions the following
controller parameters k, = 1, k;= 0.7 are obtained. Gain and phase
margins for this case are illustrated in Fig. 4. The phase margin for
this system is greater than 60° and equals 73.76°.

A=1458 dB (at2.97 radls), ¢ = 73.76 ° (at 0.64 rad/s)
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Fig. 4. Bode plot with gain and phase margins
Rys. 4. Charakterystyka Bodego z zaznaczonymi zapasami modutu i fazy

The controller gains and stability margins of the control system
for all points marked in Fig. 3 are shown in Tab. 1. This confirms
the results received on the basis of the D-partition method.

The step responses of the control system are presented in Fig. 5.
It can be seen that the decreasing value of ¢ results in larger
oscillations.

Tab. 1.  Gain and phase margins
Tab. 1. Zapasy modutu i fazy

Point Controller gains of PI"® Gain margin [dB] Phase margin [°]
1 k,=1, k;=0.7 14.58 73.76
2 k=125, k=139 11.01 50.98
3 k,=15, k=217 8.00 36.08
4 ky=2, ki=3.48 422 19.80

5. Conclusion

In this paper, the stability problem of control systems composed
of a fractional-order PI controller and an inertial plant of fractional
order with time delay is examined. On the basis of the D-partition
method, analytical forms expressing the D-partition boundaries of
stability regions in the parameter space for the specified gain and
phase margin requirements were determined. Knowledge of
stability regions permits the tuning of the fractional PI type
controller.
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The method presented can be applied to the fractional-order
time delay systems with parametric uncertainties.

The calculations and simulations were made using the
Matlab/Simulink programme.

Time [s]

Fig. 5. Step responses of control system
Rys. 5. Odpowiedzi skokowe uktadu regulacji
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