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Abstract

Mixed multiple-additive Gauss-Markov models (AGMM) of parameters or
structure changes which describe a broad variety of system failures or
radar target manoeuvres are presented. Recursive algorithms for solving
joint detection-identification problems in the presence of noise are
obtained using the generalized likelihood ratio (GLR) approach. The
proposed algorithms have relatively moderate computational requirements
in a comparison with the multiple model approach. The results of
simulation of the proposed algorithms are presented. The method can be
used for failure detection-identification or manoeuvre detection in radar
systems.

Keywords: failure detection, manoeuvre detection, nonlinear filtering,
Markov processes.

Zastosowanie AGMM do detekcji uszkodzen
i wykrycia manewréow

Streszczenie

W artykule przedstawiono addytywne modele Gausa-Markowa (AGMM —
ang. Additive Gauss-Markov Models). Wykorzystanie AGMM pozwolito
na stworzenie metody, ktéra dzigki wprowadzeniu dodatkowego uktadu
dynamicznego modelujacego nagle zmiany umozliwia objgcie opisem
szerokiego zakresu niestacjonarnosci i pozwala na oddanie wtasciwego ich
charakteru (mozna je przedstawi¢ w formie procesu losowego, procesu
zdeterminowanego, ale o losowym momencie zaistnienia lub procesu typu
mieszanego). Zaleta AGMM jest mozliwos¢ opisu nawet ztozonych zmian
dynamiki  systemu za pomoca nieskomplikowanego  aparatu
matematycznego. Modele te umozliwiaja stworzenie rekursywnych
algorytmow wykrywania uszkodzen i §ledzenia manewrujacych obiektow.
Struktura systemu ma forme¢ adaptacyjnego filtra dopasowanego do
biezacej dynamiki obiektu i stanu systemu pomiarowego, co zapewnia
minimalny btad pomiaru. Do wykrycia zmian stosowany jest bank filtrow
dodatkowych dopasowanych do réznych rodzajéw i momentéw zaistnienia
zmian oraz procedura decyzyjna oparta o metod¢ uogoélnionego stosunku
wiarygodnosci. Zastosowano metodg¢ analitycznego wyznaczania progdéw
decyzyjnych z wykorzystaniem aproksymacji rozktadu prawdopodo-
bienstwa logarytmu uogdlnionego stosunku wiarygodno$ci. Zmienna
warto$¢ progow decyzyjnych pozwolita na utrzymanie prawdopodo-
bienstwa falszywego alarmu na statym poziomie. Proponowana metoda
charakteryzuje si¢ niskim obcigzeniem obliczeniowym pozwalajacym na
stosowanie w systemach czasu rzeczywistego.

Slowa kluczowe: detekcja uszkodzen, wykrycie manewréw, filtracja
nieliniowa, procesy Markowa.

1. Introduction

Methods for detection and estimation of the structure or
parameters of abrupt changes in dynamic systems play an
important role for solving a number of problems encountered in
practice. They have an important significance in different fields of
telecommunications and control applications, such as radar
tracking of manoeuvring targets, fault diagnosis and identification
(FDI), speech analysis, signal processing in geophysics and
biomedical systems [1, 2, 6, 7]. Most of these applications belong

to a wide class of systems with abrupt random jumps of parameters
or structure.

Among wide variety of failure detection and isolation methods
an important role play classical approaches based on testing of the
innovation process properties. For instance in nominal conditions,
innovation process of the filter matched with a process model is
zero mean white noise. When the system changes have occurred,
the innovation process changes its statistical properties and carries
information about the system changes. Fig. 1 illustrates changes of
the probability density function (pdf) of the innovation process
z(k/k-1) in a case of an additive bias in measurement channel
arising at k;.

0.3} 11zkk-1)] 2k 2/k-3)
- == z(kfkr1)

0.25 — 2O+ 1)
02 —— z(k+3/k+2)

’ e z(ki+15/ki+14)
0.15
0.1
0.05

0 i

20 -10 10 2(kk-1)

Fig. 1. An example of z(k/k-1) pdf changes in a case of an additive bias in
measurement channel arising at k;

Rys. 1. Przykfad zmian rozktadu gestosci prawdopodobienstwa procesu
innowacyjnego spowodowanych zaistnieniem (od momentu k;)
skokowej zmiany addytywnej

As can be seen in Fig. 1 the z(k/k-1) is zero mean for k<k; (solid
line). Next for k>k; the mean value rises and then goes back to
zero. The variance value also changes and retain higher than in
nominal state. The character of the changes depends on type and
parameters of system nonstationarity. Tracking the z(k/k-1)
fluctuations would allow detection of the fault onset and its
identification. Using analytical approach it is desirable to have
such a mathematical model of the system and its change which
would be quite adequate and allow derivation of z(k/k-1) analytical
description. Model system fulfilling that can be obtained by using
additive Gauss-Markov models (AGMM). The method allows
description of a wide range of failures (both abrupt and incipient).
Moreover it enables to design a multimodel filtering algorithm
suitable for FDI or tracking issues.

2. The system and failures model

A model of a system changes can be obtained using a parameter
vector 9(k,k;), which can be written as:

Yk +1,k;) =k +1L,k)3(k, ki) + (k) (1)

where 4(k,#;) is an unknown Gauss-Markov state vector of
a system that models changes in the system after the jump at the
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time k;, p(k+1, k) is a transition matrix, (k) is a white Gaussian
sequences with zero mean and covariance matrix Q(k).

Then the system state equation with taking into account
possible changes can be presented as follows:

x(k+1) = Ok + 1,k)x(k) + w(k) +
+Gg(k+ D)8k + Lk)I(k +1,k;), Q)
(k)= H(k)x(k)+v(k),

where x(k) is the state vector, w(k), v(k) are white Gaussian
sequences with zero mean and covariance matrices Q(k) and R(k)
respectively, y(k) is the observation vector, H(k) is the observation
matrix and /(k, k;) is the unit step function that is zero when k<k;.

In a case of modeling changes in the measurement channel,
process (1) should be added to the measurement equation:

x(k +1) = Ok + 1L, k)x(k) + w(k),
(k) = H(k)x(k) +v(k) + Ho(k)&; (k. k;1(k ;). 3)

The modeling method based on AGMM is highly flexible.
Depending on the nature of the parameter vector 9(k,k;) the

model of changes may be classified [2] as deterministic (&(k=0)),
stochastic (¢(k+1, k)=0) or mixed (p(k+1,k)#0, &(k#£0)).

3. Synthesis of the detection-estimation
algorithm

Let us consider the system for which state and measurement
equations are given by the model (2). Then, calculating the
propagation of all signals through the Kalman filter that
is matched with a system without jumps, we see that the
innovation process z(k/k—1) of the filter and estimates x(k/k)

can be presented in the following form [3, 5]:

z(k/ k=1 k) =z (k [k =1) + Wor (kb )p(ky, ki —D)S(k; — L k) +

b o)
+ YWk ki +m)E(k +n—T1)
n=0

Rk ke k) = Rk 1)+ Fyp (kb )k b — Dok — 1,k ) +

k—k; (5)
+ zex(k’ki +n)é(ki +n-1),
n=0

where zy(k/k—1) is the innovation process (zero mean white

noise) related to the unchanged system and the remaining
elements represent the influence of specific system change on the
residuals of the filter matched to the undisturbed model.

All elements ¥, (k,k;) depend on the system matrices, onset

time and filter gain and can be calculated in a recursive way as
follows:

Pox (k. ki) = Pk .k =Dy (k=1 k;), (6)
(sz(krki) = Gs (k)¢zx(k:ki) + CD(k,k _l)q)zx(k —l,kl-), (7)
\sz(k»ki) = H(k)[q)zx(kyki) —(D(k,k - I)sz(k - lski )] > (8)

sz(kski) = K(k)l{}zx(k’ki)+q)(ksk_l)sz(k_1’ki) (9)

Pox (ki =1k = 7 i =1) 5
(sz(ki—l,kl')zo, sz(ki—l,ki):O and \Ijzx(ki—l,kl')zl
where 1 is the identity matrix.

Considering equation (4) the detection problem can be
formulated as a statistical test of two hypotheses (Hy, H), the first

with initial conditions:
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one (Hp) is intended to test the presence of the white noise
z1(k/k—1), and the second (H,), the presence of the signal

Wox (k. ki)vgg to z1£(k/k —1) noise background.

Hy:z(klk=1)=z1(k/k-1), "
Hy:z(klk=1)=z1g(k/k =1)+ ¥ (k. ki )%y » (10)
where oy = ¢lk;, ki —1)9(k; —1,k;) and z)g(k/k 1) represent

all noise components from equation (4).
Since the distribution of the onset time k; is unknown a priori,
the generalized likelihood ratio (GLR) test should be used:

maxf[Z]l; I Hy (k)]
Ak k) =— :

125 11, (a
k; 0l

where f[*] is the conditional probability density function and
Zl]; ={z(k;j ' kj = 1), ... ,z(k/k-1)} .

The decision procedure has the form (12) where the generalized
likelihood logarithm A(k,léi) is compared with the threshold

A p(k,lgi ). A variable threshold level is applied.

Hy
. > R Igi =arg max(A(k,ki)),
Akky) A p(kkp), ki (12)
< k-M+1<k; <k,
Hy

where A(k,l%») is the logarithm of /l(k,lg,-) , M is the width of the

moving window used to avoid an increasing number of additional
filters matched to successive onset moments.

The performance of the decision procedure is essential to the
efficiency of detection and so to the quality of estimation. The
general principles of the applied GLR method are well established
[4, 7, 8]. Unfortunately, the use of the GLR approach requires
knowledge of the resulting probability distributions and
application of a variable threshold level. Methods proposed in the
literature are based on simplified statistics (not GLR) or
experimental determination of constant threshold level.

The choice of a decision threshold A,(kk;) can be obtained
using the Neyman - Pearson criterion, where a probability of false
alarm Pp, (i.e. the probability of taking the decision that a fault
has occurred while the system is in a normal state) is assumed.

Prg=1=Fp(k j;)/ Hy (A p(k,k7)) (13)
Ap(k,k;)
where Fp (k) m (A p(kki)) = [F(AGk k) = Ay / Ho)dA,

is the conditional probability distribution function of A(k,k;) .

As seen in (13), the decision threshold can be determined with
the use of FAk ki) Hy (A p(k,k;)) . It can be shown [3] that the

GLR logarithm can be computed in the following way:

1 ¥ T p-1
Ak 1) = z{[z(m—l)] PN =D [z(1/1-1)]-
I=k;j

—L2( /=D =zp, (1T =1L))T P A7) % (14)
x[2(1/1=1) = Zg, (1/1=1,1;)] + In[det(Pyy (/1 = 1)] -
—In[det(P, (I/1- 1)]}
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where P,(I/1-1), P,(I/1-1,k;), and zp, (I/1-1k;) are

covariance matrixes and the expected value of the following
conditional probability distributions:

flz/1-1)/Z, " Hol= N[0, Py(/1-1)],
! (15)
flz1=1)/Z, " Hy 1= Nz, (111=1k;), P.(I11=1)].

Unfortunately, as follows from (14) the GLR logarithm A(%k;)
has a distribution not easy do define, so an appropriate
approximation should be applied. It can be shown that for M=1
the A(k,k;) has the non-central y distribution. It leads to the idea of
using this distribution as the approximation for AM>1. In this case,
the non-centrality parameter, the number of degrees of freedom
and the scaling coefficient must be determined. Calculation of
these parameters is performed by matching three statistical
moments: the first non-central, second and third central [5].

The performance of the proposed method was tested by means
of numerical simulations which demonstrated the effectiveness of
the proposed probability distribution approximations. As was
mentioned, a constant probability of false alarm causes a change
in the threshold value. An example is shown in Fig. 2. It should be
added, that the character of changes depends on system and failure
parameters and can vary from that presented.

M=12
%000 M = 6

0 10 20 30 40 k

Fig.2.  An ex ample of the threshold level variation in the case of constant Pry
Rys. 2. Przyklad zmian warto$ci progu decyzyjnego przy statym poziomie P,
i roznej szeroko$ci ruchomego okna obserwacji

Final check of validity of the thresholding algorithms was
performed by testing the outcoming probability of false alarm. As
can be seen from example shown in Fig. 3, the proposed method

demonstrates high accuracy. Mean values Pry are very close to
the assumed Ppry.

Pry(k)
0.0012 L
M=4 Pr4=0.0010
0.0011 M=3 Pr;=0.0011
M=1 P=0.0010
0.001 = = = Py = 0.001
M=5 Pr,=0.0010
0.0009 M=2P,=0.0011
0.0008 s 0 = -

Fig. 3.  An example of obtained P, variation in time when thresholds were
calculated for Pr,=0.001

Rys. 3. Przyklad zmian w czasie prawdopodobienstwa falszywego alarmu
przy zaktadanym statym poziomie Pr,=0.001 i réznej szerokos$ci
ruchomego okna obserwacji M

Thus the system of joint detection - estimation of jump changes
in a dynamic system consists of the basic Kalman filter, which
calculates values z(k/k-1), the bank of Kalman filters, which
compute the likelihood ratios A(k, k;) at different moments
ki=k—M+1,... .k, the threshold circuit for detection of abrupt
changes and the logic circuit, which selects the maximum value
A(k,t;). As can be seen in Fig. 4 the maximum value of A(%, k;) on

each timestep k>k; allows detection of the onset time (k;=k—M). It
should be noted that the proposed structure also makes it possible
to isolate failures. This can be realised by comparing the
likelihood ratios A;(k,k;) from all filters matched to possible
nonstationarity types and successive onset moments.

E[A(kk,M)]

Fig. 4.  An example of obtained A(k,;) expected value for different M in the case
of nonstationarity arising at k=20

Rys. 4. Zmiana wartosci oczekiwanej A(k,#;) w przypadku zaistnienia
niestacjonarnosci w momencie k=20 przy roznej szerokosci ruchomego
okna M

4. Conclusion

In the paper we have presented a new recursive algorithm for
joint detection and estimation of jump changes in the dynamics
and measurements of linear discrete-time systems. The jumps
were modelled as Gauss-Markov biases in state and observation
equations. The proposed models describe a wide class of dynamic
systems with jump parameters. The algorithm has been developed
on the basis of the GLR method. The method of threshold
determination for GLR test was developed. It allows a constant
rate of the probability of false alarm to be obtained in the non-
stationary state of the object or filter. The structure of the
algorithm is sufficiently simple to enable it to be applied in real-
time systems with a relatively limited computational burden. The
detection-estimation algorithm developed, was successfully
applied to the problem of radar manoeuvering target tracking and
fault-tolerant signal processing equipment. Simulation results
revealed good estimation properties of the algorithm.
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