133

PAK vol. 56, nr 2/2010

Mikotaj BUSLOWICZ

BIALYSTOK UNIVERSITY OF TECHNOLOGY, FACULTY OF ELECTRICAL ENGINEERING

Stability and robust stability conditions for a general model
of scalar continuous-discrete linear systems

Prof. dr hab. inz. Mikolaj BUSLOWICZ

Mikotaj Bustowicz received the MSc, PhD and DSc
degrees in Electrical Engineering in 1974, 1977 and
1988, respectively, all from the Faculty of Electrical
Engineering of the Warsaw University of Technology.
Since 1978 he has worked at the Biatystok University
of Technology. Since 2002 he has been professor and
since 2005 full professor at the Biatystok University of
Technology. His main research interests include analysis
and synthesis of time delay systems, positive systems,
fractional systems and continuous-discrete systems.

e-mail: busmiko@pb.edu.pl

Abstract

The problems of asymptotic stability and robust stability of the general
model of scalar linear dynamic continuous-discrete systems, standard and
positive, are considered. Simple analytic conditions for asymptotic
stability and for robust stability are given. These conditions are expressed
in terms of coefficients of the model. The considerations are illustrated by
numerical examples.
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Warunki stabilnosci oraz odpornej stabilnosci
modelu ogdlnego skalarnych liniowych
uktadéw ciagto-dyskretnych

Streszczenie

W pracy rozpatrzono problemy stabilnosci oraz odpornej stabilnosci
modelu ogdlnego (1) skalarnych liniowych uktadéw ciagto-dyskretnych,
standardowych oraz dodatnich. Bazujac na podanym w twierdzeniu 3
kryterium stabilnosci analizowanej klasy ukladéw, wyprowadzono proste
analityczne warunki asymptotycznej stabilnosci oraz odpornej stabilnosci.
Warunki  asymptotycznej stabilnosci oraz odpornej  stabilnosci
standardowego ukladu ciaglo-dyskretnego podano w twierdzeniu 4 oraz
w twierdzeniu 6, odpowiednio. Natomiast warunki asymptotycznej
stabilnosci oraz odpornej stabilnosci dodatniego uktadu ciaglo-
dyskretnego podano w twierdzeniach 5 i 8, odpowiednio. Wszystkie
warunki sa wyrazone w terminach wspoétczynnikéw modelu (1) (lub
wartosci krancowych przedziatow (13), z ktorych te wspotczynniki moga
przyjmowa¢ swoje wartosci). Rozwazania zostaly zilustrowane
przyktadami liczbowymi.

Stowa kluczowe: uktad cigglo-dyskretny, dodatni, skalarny, stabilnos¢,
odporna stabilno$¢.

1. Introduction

In continuous-discrete systems both continuous-time and
discrete-time components are relevant and interacting and these
components cannot be separated. Such systems are also called 2D
hybrid systems or hybrid systems, see [1 - 5], for example.

The models and basic properties of positive continuous-discrete
linear systems are given in [6]. A new general model of positive
continuous-discrete linear systems is introduced in the paper [1].

The realisation problem of positive continuous-discrete systems is
considered in [4, 5, 6]. The problems of stability and robust stability
of continuous-discrete linear systems are investigated in [7 - 13].

The main purpose of this paper is to present simple analytical
conditions for stability and robust stability for a general model of
scalar continuous-discrete linear systems, standard and positive.

The following notation will be used: R - the set of real

numbers, Z, - the set of non-negative integers, R, =[0,].

2. The main result

Consider the state equation of the general model of a scalar
continuous-discrete linear system (for ie Z, and e R, )

xX(t,0+1) = agx(t,i) + ayx(t,i) + apx(t,i + 1) + bu(t,i), (1)

where x(¢,i) =0x(t,i)/0t, x(t,i)eR, u(t,i)eR and qp, a,
a,, b are real constant coefficients.
The boundary conditions for equation (1) have the forms

x(0,i)=x(i), ieZ, and x(t,0)=x(1), ¥(t,0)=x(1), teR,. (2)

The model (1) will be called the standard general scalar model.

Definition 1. The general scalar model (1) is called positive
(internally) if x(z,i)>0 for all boundary conditions x(i)>0,
ieZ, and x(#)20, x(#)=0, teR,, and all inputs u(t,i) =0,
teR, ,ieZ,.

From [6] and definition 1 we have the following theorem.

Theorem 1. The scalar general model (1) is positive (internally)
if and only if

ay 20, a; 20, a, €N, b>0 and a=aq +aja, 20. 3)

The characteristic function of equation (1) (polynomial in two
independent variables s and z) has the form

w(s,z) =8z —ay —sa, — za,. 4

Definition 2. The general scalar model (1) is called
asymptotically stable (or Hurwitz-Schur stable) if for u(z,i)=0
and bounded boundary conditions (2) the condition x(¢,i)—0
holds for ¢,i — oo.

From [8, 9] we have the following theorem.
Theorem 2. The general scalar model (1) is asymptotically
stable if and only if

w(s,z)#0, Res>0, |z[>1. %)

Polynomial (4) satisfying the condition (5) is called continuous-
discrete stable (C-D stable) or Hurwitz-Schur stable.

Theorem 3. The general scalar model (1) is asymptotically
stable if and only if s(jw) <0 for all ® €[0, 2], where

ag +a, exp(jo)

6
exp(jo) —a ©

s(jo) =

Proof. In [8] it was shown that the model of continuous-discrete
linear system with the characteristic polynomial w(s,z) is
asymptotically stable if and only if

w(s,exp(j®))#0, Res>0, Voel0,2n]. 7

The condition of Theorem 3 follows directly from (7) for the
polynomial (4).
From (6) for ©=0 and ®=n we have, respectively,
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ag +02 —4ay

. a
. sy =s(m)=—2—L
1—01 1+a1

5o =5(j0) = (3)
From (6) and (8) it follows that the function s(jo) is
discontinuous in the points w=0 and ow=mn for g =1 and
a; =-1, respectively. Therefore, for excluding this discontinuity,
we will assume that a; # 1 and we consider the following values
of the coefficient a;: a; >1, —-1<a; <1 and a; <-1.
Let s(jo)=u(®)+ jv(®), u(w)=Res(jo), v(m)=Ims(jo).

It is easy to check that [u(®)— sc]2 + vz((n) =r2, where

a, +aga —ay—aa
sC=O.5(s0+sn)=2—gl; r=|s0—sc|=0—212. ©)
1—611 1—a1

This means that the plot of s(j®), ®<[0,2xn], where s(jo) is
defined by (6), is a circle with the center s, and radius . Hence,

the condition s(j®) <0, ®€[0,2xn], holds if and only if

min M, D7\ g (10)
l—al l+al

Theorem 4. The standard scalar model (1) is asymptotically
stable if and only if one of the following conditions holds:

a >1, —ayg<ay<ayg, (11a)
-l<a; <1, ay<ay, a, <—ay. (11b)
a1<—1, ag <ap <-a, (llc)

Moreover, this system is unstable if a, >—ay and a, > ay.
Proof. The proof follows directly from (10) for a; # 1.

@
ay =—ay a, =ay
0 a <-1 P a >1
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// \\
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// \\
0 ag

Fig. 1. Stability region for standard model (1)
Rys. 1. Obszar stabilnosci standardowego modelu (1)

From Theorem 4 we have the stability region in the plane
(ag, ap) shown in Fig. 1.

Now we consider the positive scalar general model (1). In this
case the conditions (3) hold. Taking into account assumption
a; #+1 we will consider the following values of the coefficient
a;: a;>1 and 0<qg <1.

From the above, the conditions (3) and Theorem 4 we obtain the
following theorem.

Theorem 5. The scalar general model (1) is positive and

asymptotically stable if and only if one of the following conditions
holds:
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a1>1, ag 20, —aO/aISaz <da, (123)
OSCI1<1, ag ZO, fao/alﬁaz <-aq. (12b)

Stability regions in the plane (ag,a,) for the positive model
(1) are shown in Figs. 2 and 3.

a
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a, =—ay/ a

0 a

Fig. 2.  Stability region described by (12a) for positive model (1)
Rys. 2. Obszar stabilnosci opisany przez (12a) dodatniego modelu (1)
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Fig.3. Stability region described by (12b) for positive model (1)
Rys. 3. Obszar stabilnosci opisany przez (12b) dodatniego modelu (1)

Now we consider the scalar continuous-discrete linear system
with uncertain parameters. In this case values of coefficients in the
model (1) are not precisely known. We will assume that the
coefficients of (1) are interval numbers, i.e.

a,ed;=[a; ,ai ], ai <aj, i=12,3, (13)

where a; and a; (i=1,2,3) are given real numbers.

The model (1) with interval coefficients (13) is robustly stable if
and only if it is asymptotically stable for all a; € 4;, i=1,2,3.

From Theorem 4 it follows that for the standard uncertain
system (1), (13) we must consider the following cases:

) 4 c(l,0) < a >,
2) 4, c(-1,1) < ay >-1 and qf <1,
3) 4 c(~0,~-1) & af <-1.

Let A=Ayx A, (x denotes the Cartesian product) be the set of
values of uncertain coefficients ag and a,. This set is a rectangle
in the plane (ay, a,) with the sides parallel to the axes and with
the vertices V;, i=1,2,3,4. Values of coefficients ay and ap in
the vertices are as follows:

. — T — a7 . — g — .t
Vit ag=ag, ay=ay, Vp: ag=ag, ay=a,,

Z¥ aozaar, azza;, Va: aozaar, ay =aj.
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From above and Theorem 4 it follows that the standard scalar
uncertain model (1), (13) is robustly stable if and only if the
rectangle 4= Ay x A, lies in a suitable stability sub-region shown

in Fig. 1, corresponding to the appropriate values of a.

Analytical conditions for them are formulated in the following
theorem.

Theorem 6. The standard uncertain model (1), (13) is robustly
stable if and only if one of the following conditions holds:

a; >1 and a3 <ay, a; >-ag, (14a)
a; >-1, af <1 and af <-aj, a3 <ag, (14b)
af <-1 and a3 <-aj, a; >ag. (14¢)

Now we consider the positive uncertain model (1), (13). By
generalization of Theorem 1 we obtain the following.

Theorem 7. The general uncertain model (1), (13) is positive if
and only if

ay 20, ai 20 and a; 2—ay /af, a3 =. (15)

In the case of the positive uncertain model (1), (13) the
rectangle A= Ayx A, must lie in the region shown in Fig. 2 for

A; c (1,0) and in the region shown in Fig. 3 for 4; <[0,1). An
example of the set 4 =4, x4, location in the stability region is

shown in Fig. 3. From Fig. 3 it follows that in this case the
positive model (1), (13) is robustly stable if and only if the model
(1) with the coefficients ap and ap corresponding to the vertices

V1 and V3 of the set 4 is asymptotically stable.

From Theorems 5 and 7 we have the following theorem.

Theorem 8. The general uncertain model (1), (13) is positive
and robustly stable if and only if one of the following conditions
holds:

ay >1 and a5 20, a3 <ay, a; >-ay /a;, (16a)

O<a <a <1 and a3 <-ag, a; 2-ag /a; . (16b)

3. lllustrative examples

Example 1. Consider the general model (1) with the
coefficients ay =1, a1 =2, a, eR.

From Theorems 4, 1 and 5 we have that the model is:
e asymptotically stable if and only if -1<a, <1,

e the positive system if and only if a, >—0.5,
e positive and asymptotically stable if and only if -0.5<a, <1.

Example 2. Consider the general uncertain model (1) with the
coefficients ay € Ay =[-1,2], a; € 4, =[-0.8,0.5], a, eR.

From condition (14b) of Theorem 6 it follows that the model is
robustly stable if and only if a5 <-2.

Example 3. Consider the general model (1) with the
coefficients ay € Ay =[2,4], a; € 4, =[0.1,0.5] and a, € R.

From Theorem 7 it follows that the model is positive if and only
if a, e[-4,»). Moreover, from Theorem 8 we have that this

model is positive and robustly stable if and only if a, €[4, -2).

4. Concluding remarks

Simple analytical conditions for stability and robust stability of
the general model of scalar continuous-discrete linear systems,
standard and positive, are given. These conditions are expressed in
terms of the model coefficients.

In particular it has been shown that:

o the general standard model (1) is asymptotically stable if and
only if plot of the function (6) lies in the open left half-plane of

the complex plane for all ® €[0, 2n] (Theorem 3),

o the general standard model (1) is asymptotically stable if and
only if one of the conditions (11) holds (Theorem 4),

o the general model (1) is positive and asymptotically stable if
and only if one of the conditions (12) holds (Theorem 5),

o the general uncertain standard model (1), (13) is robustly stable
if and only if one of the conditions (14) holds (Theorem 6),

o the general uncertain model (1), (13) is positive if and only if
the conditions (15) holds (Theorem 7),

o the general uncertain model (1), (13) is positive and robustly
stable if and only if one of the conditions (16) holds (Theorem 8).
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Education of Poland under grants No. N N514 1939 33 and
S/WE/1/06.
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