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Abstract

The analysis of transient states in asynchronous slip-ring motor with the
application of the parallel method is presented in the paper. Transient
states are described by a system of non-linear ordinary differential
equations. Solving systems of such equations is a sequential process. The
proposed parallel method converts sequential computations into
intensively parallel ones. The general idea of this method is based on
decomposition of the integration interval into sub-intervals. Computations
in sub-intervals are done based on initial conditions determined on the
basis of an approximation of the convergence graph by the exponential
function.
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Rownolegta analiza stanow nieustalonych
w silniku elektrycznym

Streszczenie

W artykule przedstawiono zastosowanie oryginalnej metody rownoleglej
analizy stanéw nieustalonych do badania dynamiki modelu silnika
asynchronicznego pier§cieniowego. Metoda ta przeznaczona jest do
analizy stanow nieustalonych wystgpujacych w obwodach elektrycznych
w przypadku, gdy stan nieustalony opisany jest ukladem réwnan
rézniczkowych zwyczajnych, liniowych lub nieliniowych (réwnaniem
stanu). Ogolna idea metody opiera si¢ na dekompozycji przedziatu
catkowania (#, #y) na podprzedzialy (rys. 2). Obliczenia zmiennych stanu
w poszczegolnych podprzedziatach wykonywane sa réownolegle przy
zastosowaniu jednej ze znanych sekwencyjnych, jednokrokowych metod
numerycznych  rozwiazywania  ukladéw  rownan  rézniczkowych
zwyczajnych. Wykonanie réwnolegle obliczen wymaga znajomosci
wartosci zmiennych stanu na poczatku kazdego podprzedzialu (warunkéw
poczatkowych). W chwili # wartoéci te znane sa z zalozenia.
W pozostatych podprzedziatach wartosci zmiennych stanu wyznaczane sa
na podstawie przyblizenia wykresu zbieznosci rozwiazania sekwencyjnego
funkcja wyktadnicza (3). Algorytm metody zaimplementowany zostal w
strategii ,,Master-Slave” (rys. 1). Proces master wyznacza sekwencyjnie
wartosci zmiennych stanu na poczatku podprzedziatow i przesyla je do
procesow slave. Wszystkie procesy (master i slave) wykonuja rownolegle
obliczenia wartosci zmiennych stanu w odpowiednich podprzedziatach
przedzialu catkowania. Po zakonczeniu obliczen proces master odbiera
wyniki obliczen od proceséw slave i zapisuje rozwiagzanie koncowe. Jako
przykiad zastosowania powyzszej metody przedstawiona zostala analiza
dynamiki modelu silnika asynchronicznego pierscieniowego. Stan
nieustalony w silniku opisany jest uktadem pigciu nieliniowych réwnan
rézniczkowych zwyczajnych (5). Obliczenia przeprowadzone zostaty przy
zastosowaniu systemu klaster skladajacego si¢ z 6 stacji roboczych.
Podczas obliczen otrzymano dobre przyblizenie warto$ci zmiennych stanu
na poczatku kazdego podprzedziatu, co zapewnito dobra doktadnosé
rozwigzania koncowego.

Stowa kluczowe: rownania rézniczkowe zwyczajne, obliczenia rownolegte,
stany nieustalone.

1. Introduction

Transient states in electrical circuits are described by systems of
ordinary and partial differential equations (continuous systems) or

systems of difference equations (discrete systems) [1-3]. In this
paper the transient states described by a system of ordinary
differential equations (the state equation), linear or non-linear, will
be considered. In most cases such systems of equations are solved
using numerical methods [4-6], which are typically sequential
methods. In such methods knowledge of the values of the
variables from the previous step is necessary in order to determine
values of the variables in the next step. There are several reasons
the application of parallel methods for solving systems of ODEs
can be helpful [7]: solving of the functions of the right-hand side
of the differential equations is too time consuming, the number of
equations in the system is large, the integration interval is long,
the system must be solved repeatedly, achieving high accuracy of
computation results in a short time requires a very small
integration step size. Several approaches towards the parallel
solution of ODEs have been developed. A good overview of those
methods can be found in papers [8-10] and monographs [7, 11].

The means of achieving parallelism in solving systems of ODEs
is classified into three categories: parallelism across the system,
parallelism across the method and parallelism across time [7, 11].
In parallelism across the system and parallelism across the method
each single process has to communicate with all other processes
during each integration step. It may have a negative effect on the
performance of computations, when they are executed in parallel
systems with a slow communication. In this paper the parallel
method for solving systems of ODEs, which belongs to the
parallelism across time category, and does not require
communication in each integration step, is proposed. This method
originates from the approach towards the parallel analysis of
transient states in electrical circuits published in [12]. The general
idea of the method is based on decomposition of the time domain
(the integration interval). Parallel computations in subsequent sub-
intervals are conducted with the use of sequential numerical
Runge-Kutta method. To start parallel computations it is necessary
to know the values at the beginning of each sub-interval. In the
proposed method those values are determined on the basis of an
approximation of the convergence graph by the exponential
function. As an example of the application of the parallel method,
the analysis of dynamics of the asynchronous slip-ring motor will
be shown.

2. The Parallel Analysis of Transient States

The proposed method is intended to conduct the analysis of
transient states in electrical circuits in which the transient state is
described by a state equation (a system of first-order ordinary
differential equations), linear:

ax(o) _ Ax(r) +Bu(r), x(1,) = x,, M
dt
or non-linear:
%:f (X(O.u(00), X(1) =%, . @

where: x(7)eR" - the vector of state variables, u(f)eR™ - the vector
of the input functions, A - the state matrix, B - the input matrix,
Xg - the vector of initial conditions, f{x(#),u(f),f) - the vector of
nonlinear functions.

The main aim of the application of this method is to reduce the
time of the state equation solving and thereby to reduce the time of
the transient state analysis.
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The parallel algorithm has been implemented using the
“Master-Slave” principle. (Fig. 1).
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Fig. 1.  The parallel algorithm flow chart
Rys. 1. Schemat blokowy algorytmu réwnoleglego

The left part of the flow chart shows the operation executed by
master process while the right part - by the slave processes. The
algorithm is composed of three main stages. The first and the third
stage are executed sequentially by the master process, while the
second stage is executed in parallel by the master and all slave
processes.

In the first stage of the algorithm, the master process divides the
integration interval (#y, ty) into N equal sub-intervals of time (#,t),
(t1,12),- . »(ty-1,ty) (Fig. 2). The number of sub-intervals should be
equal to the number of processes used in the second stage of the
parallel algorithm.
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Fig. 2.  Division of the integration interval (¢, zy) into sub-intervals
Rys. 2. Podziat przedzialu catkowania (#, #y) na podprzedziaty

In order to execute parallel computations in the second stage of
the algorithm it is necessary to know the values of the state
variables at the beginning of each sub-interval, i.e. at time points
to, 1y, ..., ty.1. These values are also called the initial conditions. At
time point f, the initial conditions are known from the
assumptions, whereas at remaining time points the initial
conditions must be determined. During examinations of the
convergence of the solutions obtained with the use of sequential
numerical method for solving systems of ODEs, it was observed
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that the convergence graph presented in logarithmic scale (Fig. 3)
could be approximated by exponential function:

x(t)=A(1-e). 3)

The observation mentioned above was the basis for working out
the method for determination of the initial conditions at the
beginning of each sub-interval. Therefore, if the state variables
values (x;,1, X2, X;3) computed for large integration step sizes (4,
hy, h3) are known, it is possible to compute 4 and o parameters of
exponential function (3) and then to determine an approximate
value (xy,) for a small A step size (Fig. 3). Detailed description of
the method for determination of the initial conditions was
presented in papers [13] and [14].

Xhs
Xh3

Xh2

h1 h’z h3 hs

Fig. 3.  The convergence graph (h; > hy > h; > hy)
Rys. 3. Wykres zbieznosci (hy > hy > h3 > hy)

In the practical implementation of the algorithm the master
process solves state equation sequentially three times in the whole
integration interval (Zy, ty) with three integration step sizes /iy, h,
and A3, respectively. Next, on the basis of the obtained solutions,
separately for each state variable and for each time point #,, 1, ...,
tv.1, the master process computes parameters of equation (3) and
then the initial conditions.

After determination of initial conditions, the second, parallel,
stage of the algorithm is started. In this stage the master process
sends the initial data to slave processes. After receiving of data, all
processes (also the master process) execute computations with
a small integration step size 4. The master process computes the
values of the state variables in the first sub-interval (¢, t,), the first
slave process - in the second sub-interval (7, #,), the second slave
process - in the third sub-interval (#, #), etc. When the
computations are finished, the slave processes send computed
solutions to the master process.

In the third stage the master process saves the final solution,
which consists of parts computed by particular processes, on his
local hard disk.

3. Analysis of Transient State in Electric Motor

As a practical example of the application of the proposed
method, the analysis of transient states in asynchronous slip-ring
motor will be presented. The motor has the following rating data:

Py =10kW, ny =1445rpm, Uy =220V
Iy =21A, I,y =28A, p=2, .4
ny =88.5%, cospy =0.82, Mgy /! My =35

The transient state in this motor is described by a system of five
non-linear ordinary differential equations [15]:
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X, =—ax, —asx, + a,x; — b,x,x; — bx,x; + ¢,

X, =asx, —a)x, + a,x, + byxx; + bx,x; +e,

X; = ayX, — ayX; —agX, + byx,x; + bx,x, —e, )
X, = a,X, + asx; —a,x, —b,xx;, —bx.x; —e,

Xy = —CyXs + XX, — X, X, — M

x(0)=0, i=12,...5

where x,, x, - standard form of the stator current, x3, x4 - standard
form of the rotor current and xs - the angular velocity.

This system is presented in standard form, which was obtained
by a transformation of the stator and rotor current equations with
the use of orthogonal matrix [15]. The coefficients on the right
hand side of equation (5) have the values resulting from the rating
data of the motor and its electrical parameters. For the analyzed
electric motor, the coefficients have the following values:

a,=82.826, a,=129.201, a,=64.19, a,=38.619
a; =314.159, b =32.515, b, =50.722, b, =19.562
b,=30515, ¢, =0.0885, c, =001, ¢ =72945
e, =72945, ¢, =113788, ¢, =113788, M =5

(6)

The system of equations (5) was solved using the parallel
method presented in previous paragraph. The computations were
carried out with the use of a homogeneous cluster, which consists
of six workstations. The cluster nodes are based on Intel
SE7505VB2 motherboard, each equipped with an Intel Xeon
2.66 GHz processor, 1 GB RAM and an 80 GB hard disk drive.
Individual nodes are connected by a Gigabit Ethernet with the
Allied Telesyn AT-9410GB switch and the Intel 82540EM
integrated network interface card. The software environment is
Ubuntu Linux and Open MPI as the message passing library.

During computations the integration interval (¢, #y): 7o = 0's, ty
= 1.2 s was divided into six equal sub-intervals (ty, ), ..., (%4, t5).
To determine the values of the state variables at the beginning of
each sub-interval (the initial conditions), #; =2.5-10% s, h, =107 s
and ;3 = 5-10" s step sizes were assumed. The main computations
were carried out with the # = 10 s step size. The fourth-order
Runge-Kutta method with a fixed step size was used as
a sequential numerical method for solving system of ODEs.

Fig. 4-8 present the obtained parallel solution of all state
variables. In these figures the limits of division of the integration
interval into sub-intervals are also marked.

The accuracy of obtained parallel solution is mainly dependant
on the accuracy of determination of the initial conditions. In order
to estimate errors introduced by parallel method, the system of
non-linear equations was solved with the application of
a sequential algorithm of the Runge-Kutta method with step size
h=10"%s (the same step size as in the main computations in the
parallel method).
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The obtained values of the sequential and parallel solutions at
the beginning of each sub-interval are presented in Table 1 and
Table 2, respectively.

Tab. 1. The values of the sequential solution at beginnings of sub-intervals

Tab. 1. Warto$ci rozwiazania sekwencyjnego na poczatku podprzedziatow
t=02s =04s =065 1,=0.08 s ts5=1.0s
X -114.5762 -67.4113 3.6549 -13.0463 -12.5053
X 266.3318 268.4583 199.2937 16.2878 16.1026
X3 170.1519 95.4645 -24.4774 -1.6258 -2.5287
X4 -411.8975 -420.6091 -307.4145 -2.9664 -2.6768
X5 29.8401 70.2515 127.1571 156.8273 156.7735

Tab. 2. The values of the parallel solution at beginnings of sub-intervals
Tab.2. Warto$ci rozwiazania rownolegtego na poczatku podprzedziatow

1=02s H=04s =0.6s 17,=0.08s ts=1.0s
Xy -114.5759 -67.4112 3.6553 -13.0463 -12.5053
X2 266.3373 268.4586 199.3095 16.2884 16.1026
X3 170.1573 95.4645 -24.4649 -1.6257 -2.5287
X4 -411.8619 -420.6089 -307.4135 -2.9664 -2.6768
Xs 29.8402 70.2516 127.1573 156.8273 156.7735

The relative errors of the determination of the initial conditions
were calculated with the use of the values presented in above-
mentioned tables, as well as, with the use of formula:

Xspo ~ Xpar

&cz' -100% - 7

Xseo

where xgz - the values of sequential solution, xp g - the values of
parallel solution. The obtained relative errors are presented in
Table 3.

Tab. 3. The relative errors of the determination of state variables values at the
beginning of each sub-interval

Tab. 3. Bledy wzglgdne wyznaczania wartosci zmiennych stanu na poczatku
podprzedziatlow

Hh=02s =04s =0.6s 17,=0.08s ts=1.0s
oy 0.0003 % <0.0001 % 0.0079 % <0.0001 % | <0.0001 %
&, 0.0021 % 0.0001 % 0.0079 % 0.0034 % <0.0001 %
;3 0.0031 % <0.0001 % 0.051 % 0.0033 % <0.0001 %
5y 0.0086 % <0.0001 % 0.0003 % 0.0013 % <0.0001 %
&KXs 0.0004 % 0.0002 % 0.0002 % <0.0001 % | <0.0001 %

As we can see, the relative errors are very small. It should
ensure a high accuracy of the parallel solution in the whole
integration interval.

In parallel computing the most commonly used performance
metric is speedup. In order to determine the speedup, the
integration interval was divided into 2, 3, 4, 5 and 6 sub-intervals
and computations were carried out with the use of 2, 3, 4, 5 and 6
computing nodes, respectively. The obtained time of the parallel
method solution was compared with the time of the sequential
solution (Runge-Kutta method with fixed step size: h = 10°% s).
The achieved values of the speedup are presented in Fig. 9.
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Rys. 9. Otrzymane warto$ci przyspieszenia obliczen

4. Conclusions

In this paper the analysis of dynamics of the asynchronous slip-
ring motor was presented. The applied parallel method for
transient state analysis is composed of three main stages. Despite
the fact that two stages are executed sequentially, good speedup
was obtained in the presented example. The initial conditions at
the beginning of each sub-interval determined on the basis of an
approximation of the convergence graph by exponential function
were close to the values of the sequential solution. It ensured
a high accuracy of the parallel solution.

This work was carried out within the frame of Bialystok
Technical University Grant No: S/WE/3/08.
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