PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oczekiwany rozkład deuteru międzygwiazdowego w heliosferze

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The expected distribution of interstellar deuterium in the heliosphere
Języki publikacji
PL
Abstrakty
PL
Deuter jest istotnym źródłem wiedzy o historii i przyszłości Wszechświata oraz różnych procesach astrofizycznych zachodzących w Galaktyce. Przedmiotem badań niniejszej pracy jest neutralny deuter pochodzenia międzygwiazdowego obecny w heliosferze w postaci gazowej. Pomiary rozkładu neutralnego deuteru w fazie gazowej prowadzone metodami astrofizycznymi obarczonymi dużymi niepewnościami. W chwili obecnej istnieje możliwość zweryfikowania tych wyników przez pomiary in situ, prowadzone w heliosferze przez misję ULYSSES bądź też przez nadchodzącą misję IBEX. W literaturze, poza jedyną znaną pracą z końca lat 70-tych, brak jest danych dotyczących rozkładu neutralnego deuteru międzygwiazdowego w bliskiej heliosferze. Celem pracy było zbadanie obfitości neutralnego deuteru międzygwiazdowego w stosunku do neutralnego wodoru w heliosferze oraz rozpoznanie możliwości obserwacyjnych pod kątem obecnych lub przyszlych misji kosmicznych. W tym celu zbudowano od podstaw teoretyczny model rozkładu neutralnego deuteru i wodoru pochodzenia międzygwiazdowego w heliosferze, wykorzystujący najnowsze modele ciśnienia promieniowania w linii Lyman-α oraz pola jonizacji i za jego pomocą badano podobieństwa i różnice w rozkładzie obu gazów. Model teoretyczny rozkładu gazu opiera się na teorii kinetycznej, w której gaz jest opisywany przez funkcję rozkładu prędkości bedącą funkcją siedmiu zmiennych niezależnych: trzech współrzędnych przestrzennych, trzech współrzędnych w przestrzeni fazowej prędkości i czasu. Momenty funkcji rozkładu tj. gęstość gazu, prędkość masową oraz rozmycie termiczne uzyskuje się przez odpowiednie całkowanie funkcji rozkładu po przestrzeni prędkości. Rezultaty symulacji numerycznych prowadzą do następujących wniosków: na skutek różnic w ciśnieniu promieniowania działającego na atomy deuteru i wodoru należy spodziewać się wzrostu obfitości D/H w głąb heliosfery w stosunku do wartości w lokalnym obłoku międzygwiazdowym oraz przyspieszania deuteru w stosunku do wodoru aż do ok. 50% w pobliżu Słońca, co przekłada się na pond czterokrotnie większą energię atomów deuteru w stosunku do atomów wodoru. Wyniki to dają nadzieje na bezpośrednią detekcję neutralnego deuteru pochodzenia międzygwiazdowego w otoczeniu Słońca.
EN
Deuterium is an important source of knowledge about the history and future of the Universe and the various astrophysical processes taking place in the Galaxy. The subject of this research work is the neutral deuterium of interstellar origin presented in the heliosphere in the gaseous form. Measurements of the neutral deuterium distribution in the gas phase are carried out by the astrophysical methods cursed with large uncertainties. At present, it is possible to verify these results by in situ measurements carried out in the heliosphere by the Ulysses mission, or by the forthcoming IBEX mission. In the literature, apart from the only known work from the end of 70th decade, there is no data on the distribution of neutral interstellar deuterium in the nearby heliosphere. The purpose of this study was to examine the abundance of neutral interstellar deuterium in relation to neutral hydrogen in the heliosphere and recognition of observation opportunities for present or future space missions. To this end, the theoretical distribution model of neutral interstellar deuterium and hydrogen in the heliosphere was built from scratch, using the latest models of radiation pressure in the Lyman-a line and ionization field and by means of it the similarities and differences in the distribution of the two gases were studied. Theoretical model of gas distribution is based on the kinetic theory, in which the gas is described by the velocity distribution function as a function of seven independent variables: three spatial coordinates, three coordinates in the velocity phase space and tim The moments of distribution functions such as gas density, bulk velocity and thermal spread are obtained by integrating the distribution function in the velocity space. The results of numerical simulations are the following due to the differences in the radiation pressure acting on the hydrogen and deuterium atoms, the abundance of D/H is expected to increase deep into the heliosphere in relation to its value in the local interstellar cloud and acceleration of deuterium in relation to hydrogen up to about 50% in the vicinity of the Sun, which translates into more than four times greater energy of the deuterium atoms in relation to hydrogen atoms. These results give hope for the direct detection of neutral interstellar deuterium in the vicini>of the Sun.
Rocznik
Strony
111--272
Opis fizyczny
Bibliogr. 216 poz., rys., tab., wzory
Twórcy
  • Instytut Lotnictwa
Bibliografia
  • M. Abramowitz i I. A. Stegun. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, 1972.
  • D. B. Alexashov, V. B. Baranov, E. V. Barsky, i A. V. Myasnikov. An Axisymmetric Magnetohydrodynamic Model for the Interaction of the Solar Wind with the Local Interstellar Medium Astron. Lett., 26:743-749, 2000.
  • D. B. Alexashov, S. V. Chalov, A. V. Myasnikov, V. V. Izmodenov, i R. Kallenbach The dynamical role of anomalous cosmic rays in the outer heliosphere. A&A, 420:729-736, 2004.
  • F. Auchère, J. W. Cook, J. S. Newmark, D. R. McMullin, R von Steiger, i M. Witte. The Heliospheric He II 30.4 nm Solar Flux During Cycle 23. ApJ, 625:1036-1044, 2005.
  • W. I. Axford. The interaction of the solar wind with the interstellar medium. In J. M. Wilcox C. R Sonnet, P. J. Coleman, editor, The Solar Wind, NASA Spec. Publ. 308, page 609, 1972.
  • V. B. Baranov. Gasdynamics of the solar wind interaction with the interstellar medium Space Sci. Rev., 52:89-120, 1990.
  • V. B. Baranov i Y. G. Malama. Axisymmetric Self-Consistent Model of the Solar Wind Interaction with the Lism• Basic Results and Possible Ways of Development. Space Sci. Rev., 78:305-316, 1996.
  • V. B. Baranov i Yu. G. Malama. Model of the solar wind interaction with the Local Interstellar Medium- numerical solution of self-consistent problem. J. Geophys. Res., 98:15157-15163, 1993.
  • V. B. Baranov i N. A. Zaitsev. On the problem of the solar wind interaction with magnetized interstellar plasma. A&A, 304:631-637, 1995.
  • V. B. Baranov, M. G. Lebedev, i Y. G. Malama. The influence of the interface between the heliosphere and the Local Interstellar Medium on the penetration of the H atoms to the solar system. ApJ, 375:347-351, 1991.
  • C. F. Barnett, H. T. Hunter, M. I. Kirkpatrick, I. Alvarez, C. Cisneros, i R. A. Phaneuf. Atomic data for fusion. Collisions of H, 112, He and Li atoms and ions with atoms and molecules, volume ORNL-6086/V1. Oak Ridge National Laboratories, Oak Ridge, Tenn., 1990.
  • E. M. Berkhuijsen, C. G. T. Haslam. I. C. J. Salter. Are the galactic loops supernova remnants? MLA., 14:252-262, 1971.
  • J. L. Bertaux i J. E. Blamont. Evidence for a source of an extraterrstrial hydrogen Lyman Alpha emission: The interstellar wind. A&A, 11:200-217, 1971.
  • J. L. Bertaux i J. E. Blamont Interpretation of OGO 5 Lyman Alpha Measurements in the Upper Geocorona. J. Geophys. Res., 78:80-91, 1973.
  • J. L. Bertaux, A. Ammar, i J. E. Blamont. OGO 5 determination of the local interstellar wind parameters. In Space Research XII, Vol. 2, p. 1559-1567, volume 2 of Space Research, pages 1559-1567, 1972.
  • J. L. Bertaux, E. Kyrölä, E. Quémerais, R Pellinen, R. Lallement, W Schmidt, M. Berthé E. Dimarellis, J. P. Goutail, C. Taulemasse, C. Bernard, G. Leppelmeier, T. Summanen, H. Hannula, H. Huomo, V. Kehlä, S. Korpela, K. Leppälä, Strömmer, J. Torsti, K. Viherkanto, J. F. Hochedez, G. Chretiennot, i T. Holzer. Swan: a study of solar wind anisotropies on soho with lyman alpha sky mapping. Sol. Phys., 162:403-439, 1995.
  • J. L. Bertaux, E. Quémerais, i R. Lallement. Observations of a sky Lyman a groove related to enhanced solar wind mass flux in the neutral sheet. Geophys. Res. Lett., 23:3675-3678, 1996.
  • J. L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T Summanen, J. P. Goutail, M. Berthé, J. Costa, i T. Holzer. First results from swan lyman-α solar wind mapper on soho. Sol. Phys., 175:737-770, 1997.
  • J. L. Bertaux, E. Kyrölä, E. Quémerais, R. Lallement, W. Schmidt, J. Costa, i T. Mäkinen. Swan observations of the solar wind latitude distribution and its evolution since launch. Space Sci. Rev., 87:129-132, 1999.
  • P. Blum i H. J. Fahr. Interaction between interstellar hydrogen and the solar wind. A&A, 4:280-290, 1970.
  • P. Blum, P. Gangopadhyay, H. S. Ogawa, i D. L. Judge. Solar-driven neutral density waves. A&A, 272:549-554, 1993.
  • R. M. Bonnet, P. Lemaire, J. C. Vial, G. Artzner, P. Gouttebroze, A. Jouchoux, A. Vidal-Madjar, J. W. Leibacher, i A. Skumanich. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results. ApJ, 221:1032-1053, 1978.
  • J. C. Brandt i M. Snow. Heliospheric latitude variations of properties of cometary plasma tails: a test of the Ulysses Comet Watch Program Icarus, 148:52-64, 2000.
  • E. M. Burbidge, G. R. Burbidge, W. A. Fowler, i F. Hoyle. Synthesis of the elements in stars. Rev. Mod. Phys., 29:547-650, 1957.
  • L. F. Burlaga, N. F. Ness, M. H. Acuña, R. R Lepping, J. E. P. Connerney, E. C. Stone, i F. B. McDonald. Crossing the Termination Shock into the Heliosheath: Magnetic Fields. Science, 309:2027-2029, 2005.
  • M. Bzowski. Time dependent radiation pressure and time dependent 2D ionisation rate for heliospheric modelling. In K. Scherer, H. Fichtner, H. J. Fahr, i E. Marsch, editors, The Outer Heliosphere: The Next Frontiers, COSPAR Colloquia Series Vol. 11, pages 69-72. Elsevier, Pergamon, 2001a.
  • M. Bzowski. A model of charge exchange of interstellar hydrogen on a time-dependent, 2D solar wind. Space Sci. Rev., 97:379-383, 2001b.
  • M. Bzowski. Response of the groove in heliospheric Lyman-a glow to latitudedependent ionization rate. A&A, 408:1155-1164, 2003.
  • M. Bzowski i D. Ruciński. Solar cycle modulation of the interstellar hydrogen density distribution in the heliosphere. Space Sci. Rev., 72:467-470, 1995.
  • M. Bzowski, H. J. Fahr, i D. Ruciński. Interplanetary neutral particle fluxes influencing the Earths atmosphere and the terrestrial environment Icarus, 124:209-219, 1996.
  • M. Bzowski, H. J. Fahr, D. Ruciński, i H. Scherer. Variation of bulk velocity and temperature anisotropy of neutral heliospheric hydrogen during the solar cycle. A&A, 326:396-411, 1997.
  • M. Bzowski, T. Summanen, D. Ruciński, i E. Kyrölä. A time-dependent, 3D model of hydrogen distribution in the inner heliosphere. In K. Scherer, H. Fichtner, H. J. Fahr, i E. Marsch, editors, The outer heliosphere: the next frontiers, COSPAR Colloquia Series Vol. 11, pages 129-132. Elsevier, Pergamon, 2001.
  • M. Bzowski, T. Summanen, D Ruciński, i E. Kyrölä. Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman-α flux. J. Geophys. Res., 107:2-1, 2002.
  • M. Bzowski, T. Mäkinen, E. Kyrifold, T. Summanen, i E. Quèmerais. Latitudinal structure and north-south asymmetry of the solar wind from Lyman-α remote sensing by SWAN. A&A, 408:1165-1177, 2003.
  • M. Bzowski, E Moebius, S. Tarnopolski, V. Izmodenov, i G. Gloeckler. Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. ArXiv e-prints, 710, October 2007.
  • S. Chabrillat i G. Kockarts. Simple parameterization of the absorption of the solar lyman-alpha line. Geophys. Res. Lett., 24:2659-2662, 1997.
  • J. M. A. Danby i J. L. Carom Statistical dynamics and accretion. MNRAS, 117:150, 1957.
  • L. Davis. Interplanetary Magnetic Fields and Cosmic Rays. Phys. Rev., 100:1440-1444, 1955.
  • E. J. de Geus. Interactions of stars.and interstellar matter in Scorpio Centaurus. A&A, 262:258-270, 1992.
  • R. B. Decker, S. M. Krimigis, E. C. Roelof, M. E. Hill, T. P. Armstrong, G. Gloeckler, D. C. Hamilton, i L. J. Lanzerotti. Voyager 1 in the Foreshock, Termination Shock, and Heliosheath. Science, 309:2020-2024, 2005.
  • A. J. Dessler. Solar Wind and Interplanetary Magnetic Field. Rev. Geophys., 5:1-41, 1967.
  • R. J. Egger i B. Aschenbach. Interaction of the Loop I supershell with the Local Hot Bubble. A&A, 294:L25-L28, 1995.
  • R. I. Epstein, J. M. Lattimer, i D. N. Schramm The origin of deuterium Nature, 263:198-202, 1976.
  • B. D. Esry, H. R. Sadeghpour, E. Wells, i I. Ben-Itzhak Charge exchange in slow H + D(1s) collisions. J. Phys. B Atom. Mol. Opt. Phys., 33:5329-5341, 2000.
  • H. J. Fahr. On the influence of neutral interstellar matter on the upper atmosphere. Ap&SS, 2:474-495, 1968.
  • H. J. Fahr Change of interstellar gas parameters in stellar wind dominated astrospheres: solar case. A&A, 66:103-117, 1978.
  • H. J. Fahr. Interstellar hydrogen subject to a net repulsive solar force field. A&A, 77:101-109, 1979.
  • H. J. Fahr., T. Kausch, i H. Scherer. A 5-fluid hydrodynamic approach to model the solar system - interstellar medium interaction. A&A, 357:268-282, 2000.
  • H. J. Fahr, H. Fichtner, i K. Scherer. Theoretical aspects of energetic neutral atoms as messengers from distant plasma sites with emphasis on the heliosphere. Rev. Geophys., 45:1-38, 2007.
  • P. Fitzgerald. The Distribution of Interstellar Reddening Material. AJ, 73:983-994, 1968.
  • L. Floyd, W. K. Tobiska, i R. P. Cebula. Solar uv irradiance, its variation, and its relevance to the earth. Adv. Space Res., 29:1427-1440, 2002.
  • J. Fontenla, E. J. Reichmann, i E. Tandberg-Hanssen. The Lyman-alpha line in various solar features. I - Observations. ApJ, 329:464-481, 1988.
  • J. M. Fontenla, E. H. Avrett, i R. Loeser. Energy balance in the solar transition region. II - Effects of pressure and energy input on hydrostatic models. ApJ, 377:712-725, 1991.
  • J. M. Fontenla, E. H. Avrett, i R. Loeser. Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion. ApJ, 572:636-662, 2002.
  • P. Frick, R. Stepanov, A. Shukurov, i D. Sokoloff. Structures in the rotation measure sky. MNRAS, 325:649-664, 2001.
  • P. C. Frisch. The Local Bubble and Interstellar Material Near the Sun. Space Sci. Rev., 130:355-365, 2007.
  • P. C. Frisch. Characteristics of Nearby Interstellar Matter. Space Sci. Rev., 72: 499-592, 1995.
  • P. C. Frisch i D. G. York. Synthesis maps of ultraviolet observations of neutral interstellar gas. ApJ, 271:L59-L63, 1983.
  • P. C. Frisch, L. Grodnicki, i D. E. Welty. The Velocity Distribution of the Nearest Interstellar Gas. ApJ, 574:834-846, 2002.
  • D. Galli i F. Palla Deuterium chemistry in the primordial gas. Planet. Space Sci., 50:1197-1204, 2002.
  • D. Galli i F. Palla The chemistry of the early Universe. A&A, 335:403-420, 1998a.
  • D. Galli i F. Palla Further aspects of the chemistry and cooling of the primordial gas. Memor. Soc. Astronom. Ital., 69:337-344, 1998b.
  • J. Geiss i G. Gloeckler. Isotopic Composition of H, HE and NE in the Protosolar Cloud. Space Sci. Rev., 106:3-18, 2003.
  • J. Geiss i H. Reeves. Cosmic and Solar System Abundances of Deuterium and Helium-3. A&A, 18:126-132, 1972.
  • J. Geiss, G. Gloeckler, U. Mall, R. von Steiger, A. B. Galvin, i K. W. Ogilvie. Interstellar oxygen, nitrogen and neon in the heliosphere. ASIA, 282:924-933, 1994.
  • G. Gloeckler. The abundance of atomic 1H, 4He and 'He in the local interstellar cloud from pickup ion observations with SWIGS on Ulysses. Space Sci. Rev., 78:335-346, 1996.
  • G. Gloeckler i J. Geiss. Heliospheric and Interstellar Phenomena Deduced From Pickup ion Observations. Space Sci. Rev., 97:169-181, 2001.
  • G. Gloeckler, J. Geiss, H. Balsiger, L. A. Fisk, A. B. Galvin, F. M. Ipavich, K. W. Ogilvie, R. von Steiger, i B. Wilken. Detection of interstellar pickup hydrogen in the solar system. Science, 261:70-73, 1993.
  • G. Gloeckler, L. A. Fisk, i J. Geiss. Anomalously small magnetic field in the local interstellar cloud. Nature, 386:374-376, 1997.
  • I. A. Grenier. The Gould Belt, star formation, and the local interstellar medium. ArXiv Astrophysics e-prints, 2004.
  • M. Gruntman i V. Izmodenov. Mass transport in the heliosphere by energetic neutral atoms. J. Geophys. Res., 109:12108-+, 2004.
  • M. Gruntman, E. C. Roelof, D. G. Mitchell, H. J. Fahr, H. O. Funsten, i D. J. McComas. Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res., 106:15767-15782, 2001.
  • M. A. Gruntman. Two-step photoionization of hydrogen atoms in interplanetary space. Planet Space Sci., 38:1225-1230, 1990.
  • S. Grzedzielski i R. Ratkiewicz. Asymmetric distant solar wind. Acta Astron., 25:177-204, 1975.
  • D. A. Gurnett i W. S. Kurth. Electron Plasma Oscillations Upstream of the Solar Wind Termination Shock. Science, 309:2025-2027, 2005.
  • K. L. Harvey i F. Recely. Polar coronal holes during cycles 22 and 23. Sol. Phys., 211:31-52, 2002.
  • G. Hébrard, T. M. Tripp, P. Chayer, S. D. Friedman, J Dupuis, P. Sonnentrucker, G. M. Williger, i H. W. Moos. FUSE Determination of a Low Deuterium Abundance along an Extended Sight Line in the Galactic Disk. ApJ, 635:1136-1150, 2005.
  • C. Heiles. 9286 Stars: An Agglomeration of Stellar Polarization Catalogs. AJ, 119:923-927, 2000.
  • C. Heiles i R. Crutcher. Magnetic Fields in Diffuse HI and Molecular Clouds In R. Wielebinski i R. Beck, editors, Cosmic Magnetic Fields, volume 664 of Lecture Notes in Physics, Berlin Springer Verlag, pages 137-182, 2005.
  • C. Heiles, Y. -H. Chu, T. H. Troland, R. J. Reynolds, i I. Yegingil. A new look at the north Polar Spur. ApJ, 242:533-540, 1980.
  • R. R. Hodges, Jr. i E. L. Breig. Charge transfer and momentum exchange in exospheric D-H(+) and H-D(+) collisions. J. Geophys. Res., 98:1581-1588, 1993.
  • T. E. Holzer. Neutral hydrogen in interplanetary space. Rev. Geophys., 15:467-490, 1977.
  • T. E. Holzer. Interaction between the solar wind and the interstellar medium. ARA&A, 27:199-234, 1989.
  • A. Igarashi i C. D. Lin Full Ambiguity-Free Quantum Treatment of D++H\(1s\) Charge Transfer Reactions at Low Energies. Phys. Rev. Lett., 83:4041-4044, 1999.
  • K. Issautier, N. Meyer-Vernet, M. Moncuquet, i S. Hoang Solar wind radial and latitudinal structure - Electron density and core temperature from ULYSSES thermal noise spectroscopy. J. Geophys. Res., 103:1969-1980, 1998.
  • V. Izmodenov, Y. G. Malama, G. Gloeckler, i J. Geiss. Effects of Interstellar and Solar Wind ionized Helium on the Interaction of the Solar Wind with the Local Interstellar Medium ApJ, 594:L59-L62, 2003.
  • V. Izmodenov, S. Alexashov, i A. Myasnikov. Direction of the interstellar h atom flow in the heliosphere: role of the interstellar magnetic field. A&A, 437:L35-L38, 2005.
  • V. V. Izmodenov. Physics and gasdynamics of the heliospheric interface. Ap&SS, 274:55-69, 2000.
  • V. V. Izmodenov. Filtration of Interstellar Atoms through the Heliospheric Interface. Space Sci. Rev., 130:377-387, 2007.
  • V. V. Izmodenov. Velocity distribution of interstellar h atoms in the heliospheric interface. Space Sci. Rev., 97:385-388, 2001.
  • V. V. Izmodenov i D. B. Alexashov. Multi-component 3D modeling of the heliospheric interface: effects of interstellar magnetic field. In J. Heeriklitfisen, V. Florinski, G P. Zank, i N. V. Pogorelov, editors, Physics of the Inner Heliosheath, volume 858 of American Institute of Physics Conference Series, pages 14-19, September 2006.
  • V. V. Izmodenov, R. Lallement, i Y. G. Malama. Interstellar neutral oxygen in a two-shocks heliosphere. A&A, 317:193-202, 1997.
  • V. V. Izmodenov, Y. G. Malama, A. P. Kalinin, M Gruntman, R. Lallement, i I. P. Rodionova. Hot Neutral H in the Heliosphere: Elastic H-H, H-p Collisions. Ap&SS, 274:71-76, 2000.
  • V. V. Izmodenov, M. A. Gruntman, i Y. G. Malama. Interstellar hydrogen atom distribution function in the outer heliosphere. J. Geophys. Res., 106:10681-10689, 2001.
  • J. T. Jefferies i R. N. Thomas. The Source Function in a Non-Equilibrium Atmosphere. II. The Depth Dependence of the Source Function for Resonance and Strong Subordinate Lines. ApJ, 127:667-675, 1958.
  • J. T. Jefferies i R. N. Thomas. Source Function in a Non-Equilibrium Atmosphere. III. The Influence of a Chromosphere. ApJ, 129:401-407, 1959.
  • J. A. Joselyn i T. E. Holzer. The effect of asymmetric solar wind on the Lyman-α sky background. J. Geophys. Res., 80:903-907, 1975.
  • J. C. Kasper, M. L. Stevens, A. J. Lazarus, 3. T. Steinberg, i K. W. Ogilvie. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle. ApJ, 660:901-910, 2007.
  • J. H. King i N. E. Papitashvili. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res., 110:2104-2112, 2005.
  • W. Köhnlein Radial dependence of solar wind parameters in the ecliptic (1.1 r - 61 au). Sol. Phys., 169:209-213, 1996.
  • A. S. Krieger, A. F. Timothy, i E. C. Roelof. A Coronal Hole and Its Identification as the Source of a High Velocity Solar Wind Stream. Sol. Phys., 29:505-525, 1973.
  • M. Kubiak Gwiazdy i materia międzygwiazdowa. Wydawnictwo Naukowe PWN, 1994.
  • S. Kumar i A. L. Broadfoot. Signatures of solar wind latitudinal structure in interplanetary Lyman-α emissions: Mariner 10 observations. ApJ, 228:302-311, 1979.
  • E. Kyrölä, T. Summanen, i P. Råback. Solar cycle and interplanetary hydrogen. A&A, 288:299-314, 1994.
  • R. Lallement. The Local Interstellar Medium . Peculiar or Not? Space Sci. Rev., 130:341-353, 2007.
  • R. Lallement. Relation between ISM inside and outside the heliosphere. Space Sci. Rev., 78:361-374, 1996.
  • R. Lallement, J. L. Bertaux, V. G. Kurt, i E. N. Mironova. Observed perturbations of the velocity distribution of interstellar hydrogen atoms in the solar system with. Prognoz Lyman-alpha measurements. A&A, 140:243-250, 1984.
  • R. Lallement, J. L. Bertaux, i F. Dalaudier. Interplanetary Lyman α spectral profiles and intensities for both repulsive and attractive solar force fields: Predicted absorption pattern by a hydrogen cell. A&A, 150:21-32, 1985a.
  • R. Lallement, J. L. Bertaux, i V. G. Kurt. Solar wind decrease at high heliographic latitudes detected from Prognoz interplanetary Lyman Alpha mapping. J. Geophys. Res., 90:1413-1420, 1985b.
  • R. Lallement, B. Y. Welsh, J. L. Vergely, F. Crifo, i D. Sfeir. 3D mapping of the dense interstellar gas around the Local Bubble. A&A, 411:447-464, 2003.
  • R. Lallement, E. Quémerais, J. L. Bertaux, S. Ferron, D. Koutroumpa, i R. Pellinen. Deflection of the Interstellar Neutral Hydrogen Flow Across the Hefiospheric Interface. Science, 307:1447-1449, 2005.
  • E. Leer, T. E. Holzer, i T. Fla. Acceleration of the solar wind. Space Sci. Rev., 33:161-200, 1982.
  • P. Lemaire, J. Charra, A. Jouchoux, A. Vidal-Madjar, G. E. Artzner, J. C. Vial, R. M. Bonnet, i A. Skumanich. Calibrated full disk solar H I Lyman-alpha and Lyman-beta profiles. ApJ, 223:L55-L58, 1978.
  • P. Lemaire, C. Emerich, J. -C. Vial, W. Curdt, U. Schüle, i K. Wilhelm. Variation of the full Sun hydrogen Lyman profiles through solar cycle 23. Adv. Space Res., 35:384-387, 2005.
  • P. L. Lemaire, C. Emerich, J. C. Vial, W. Curdt, U. Schüle, i K. Wilhelm. Variation of the full sun hydrogen lyman a and 0 profiles with the activity cycle. In ESA SP-508: From Solar MM to Max: Half a Solar Cycle with SOHO, pages 219-222, 2002.
  • S. Lepp. Pregalactic Chemistry. Ap&SS, 285:737-744, 2003.
  • S. T. Lepri, T. H. Zurbuchen, L. A. Fisk, I. G. Richardson, H. V. Cane, i G. Gloeckler. Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res., 106:29231-29238, 2001.
  • J. L. Leroy. Interstellar dust and magnetic field at the boundaries of the Local Bubble. Analysis of polarimetric data in the light of HIPPARCOS parallaxes. A&A, 346:955-960, 1999.
  • B. G. Lindsay i R. F. Stebbings Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res., 110:A12213, 2005.
  • J. L. Linsky D/H and Nearby Interstellar Cloud Structures. Space Sci. Rev., 130:367-375, 2007.
  • J. L. Linsky i B. E. Wood. The a Centauri line of sight: D/H ratio physical properties of local interstellar gas, and measurement of heated hydrogen (“hydrogen wall”) near the heliopause. ApJ, 463:254-270, 1996.
  • J. L. Linsky, B. T. Draine, H. W. Moos, E. B. Jenkins, B. E. Wood, C. Oliveira, W. P. Blair, S D. Friedman, C Gry, D. Knauth, J. W. Kruk, S. Lacour, N. Lehner, S. Redfield, J. M. Shull, G. Sonneborn, i G. M. Williger. What Is the Total Deuterium Abundance in the Local Galactic Disk? ApJ, 647:1106-1124, 2006.
  • N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Ap&SS, 39:447-462, 1976.
  • P. B. Lucke. The distribution of color excesses and interstellar reddening material in the solar neighborhood. A&A, 64:367-377, 1978.
  • J. Maher i B. A. Tinsley. Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions. J. Geophys. Res., 82:689-695, 1977.
  • J. Maíz-Apellániz. The Origin of the Local Bubble. ApJ, 560:L83-L86, 2001.
  • M. Maksimovic, I. Zouganelis, J. -Y. Chaufray, K. Issautier, E. E. Scime, J. E. Littleton, E. Marsch, D. J. McComas, C. Salem, R. P. Lin, i H. Elliott Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res., 110:9104-9112, 2005.
  • E. Marsch, W. G. Pilipp, K. M. Thieme, i H. Rosenbauer. Cooling of solar wind electrons inside 0.3 AU. J. Geophys. Res., 94:6893-6898, 1989.
  • D. McComas, F Allegrini, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, D. Reisenfeld, E. Roelof, N. Schwadron, M. Wieser, M. Witte, P. Wurz, i G. Zank. The Interstellar Boundary Explorer (IBEX). In AIP Conf. Proc. 719: Physics of the Outer Heliosphere, pages 162-181, 2004.
  • D. McComas, F. Allegrini, L. Bartolone, i et al. The Interstellar Boundary Explorer (IBEX) Mission. In Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, volume 592 of ESA Special Publication, 2005.
  • D. J. McComas i N. A. Schwadron. An explanation of the Voyager paradox: Particle acceleration at a blunt termination shock. Geophys. Res. Lett., 33:4102-4107, 2006.
  • D. J. McComas, S. J. Bame, B. L. Barraclough, W. C. Feldman, H. O. Funsten, J. T. Gosling, P. Riley, R. Skoug, A. Balogh, R. Forsyth, B. E. Goldstein, i M. Neugebauer. Ulysses’ return to the slow solar wind. Geophys. Res. Lett., 25:1-4, 1998.
  • D. J. McComas, H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, i B. E. Goldstein. The three-dimensional solar wind around solar maximum. Geophys. Res. Lett., 30:24-1, 2003.
  • D. J. McComas, F. Allegrini, L. Bartolone, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Mains, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, H Runge, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, i G. Zank. The interstellar boundary explorer (IBEX),: Update at the end of phase B. In J. Heerikhuisen, V. Florinski, G. P. Zank, i N. V. Pogorelov, editors, Physics of the Inner Heliosheath, volume 858 of American Institute of Physics Conference Series, pages 241-250, 2006.
  • D. R. McMullin, M Bzowski, E Möbius, A. Pauluhn, R Skoug, W. T. Thompson, M. Witte, R. von Steiger, D. Ruciński, D. Judge, M. Banaszkiewicz, i R. Lallement. Heliospheric conditions that affect the interstellar gas inside the heliosphere. A&A, 426:885-895, 2004.
  • E. Möbius, M. Bzowski, S. Chalov, H. -J. Fahr, G. Gloeckler, V. Izmodenov, R. Kallenbach, R. Lallement, D. McMullin, H. Noda, M. Oka, A. Pauluhn, J. Raymond, D. Ruciński, R. Skoug, T. Terasawa, W. Thompson, J. Vallerga, R. von Steiger, i M. Witte. Synopsis of the interstellar He parameters from combined neutral gas, pickup ion and UV scattering observations and related consequences. A&A, 426:897-907, 2004.
  • D. C. Morton i K. G. Widing The Solar Lyman-Alpha Emission Line. ApJ, 133:596-605, 1961.
  • A. V. Myasnikov, D. B. Alexashov, V. V. Izmodenov, i S. V. Chalov. Self-consistent model of the solar wind interaction with three-component circumsolar interstellar cloud: Mutual influence of thermal plasma, galactic cosmic rays, and H atoms. J. Geophys. Res., 105:5167-5178, 2000a.
  • A. V. Myasnikov, V. V. Izmodenov, D. B. Alexashov, i S. V. Chalov. Self-consistent model of the solar wind interaction with two-component circumsolar interstellar cloud: Mutual influence of thermal plasma and galactic cosmic rays. J. Geophys. Res., 105:5179-5188, 2000b.
  • M. Neugebauer i C. W. Snyder. Solar Plasma Experiment. Science, 138:1095-1097, 1962.
  • J. H. Newman, J. D. Cogan, D. L. Ziegler, D. E. Nitz, R. D. Rundel, K. A. Smith, i R. F. Stebbings Charge transfer in h+-h and h+-d collisions within the energy range 0.1¯ 150 ev. Phys. Rev. A, 25(6):2976-2984, 1982.
  • H. S. Ogawa, C. Y. R. Wu, P. Gangopadhyay, i D. L. Judge Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space. J. Geophys. Res., 100:3455-3462, 1995.
  • F. Paresce. On the distribution of interstellar matter around the sun. AJ, 89:1022-1037, 1984.
  • E. N. Parker. Dynamics of the Interplanetary Gas and Magnetic Fields. ApJ, 128:664-676, 1958.
  • E. N. Parker. The Stellar-Wind Regions. ApJ, 134:20-27, 1961.
  • E. N. Parker. Interplanetary dynamical processes. New York, Interscience Publishers, 1963., 1963.
  • P. J. E. Peebles. Primordial Helium Abundance and the Primordial Fireball II ApJ, 146:542-552, 1966.
  • A. A. Penzias i R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. ApJ, 142:419-421, 1965.
  • J. L. Phillips, S. J. Bame, A. Barnes, B. L. Hancelough, W C Feldman, B. E. Goldstein, J. T. Gosling, G. W. Hoogveen, D. J. McComas, M. Neugebauer, i S. T. Suess. Ulysses solar wind plasma observations from pole to pole. Geophys. Res. Lett., 22:3301-3304, 1995.
  • W. G. Pilipp, K. -H. Muehlhaeuser, H. Miggenrieder, M. D. Montgomery, i H. Rosenbauer. Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res., 92:1075-1092, 1987a.
  • W. G. Pilipp, K.-H. Muehlhaeuser, H. Miggenrieder, M. D. Montgomery, i H. Rosenbauer. Unusual electron distribution functions in the solar wind derived from the HELIOS plasma experiment - Double-strahl distributions and distributions with an extremely anisotropic core. J. Geophys. Res., 92:1093-1101, 1987b.
  • N. V. Pogorelov i G. P. Zank. The Direction of the Neutral Hydrogen Velocity in the Inner Heliosphere as a Possible Interstellar Magnetic Field Compass. ApJ, 636: L161-L164, 2006.
  • W. H. Press, S. A. Teukolsky, W. T. Vetterling, i B. P. Flannery. Numerical recipes in Fortran (2nd ed.): the art of scientific computing. Cambridge University Press, 1992.
  • W. H. Press, S. A. Teukolsky, W. T. Vetterling, i B. P. Flannery. Numerical recipes in Fortran 90 (2nd ed.): the art of parallel scientific computing. Cambridge University Press, 1996.
  • W. R. Pryor, J. M. Ajello, D. J. McComas, M. Witte, i W. K. Tobiska. Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res., 108:9-1, 2003.
  • J. D. Purcell i R. Tousey. The Profile of Solar Hydrogen-Lyman-a J Geophys. Res., 65:370-372, 1960.
  • E. Quémerais Angle dependent partial frequency redistribution in the interplanetary medium at Lyman alpha. A&A, 480:353-367, 2000.
  • E. Quemerais, R Lallement, D. Koutroumpa, i P. Lamy. Velocity Profiles in the Solar Corona from Multi-Instrument Observations. ApJ, 667:1229-1234, 2007.
  • A. Ralston. Wstęp do analizy numerycznej. Państwowe Wydawnictwo Naukowe, 1975.
  • R. Ratkiewicz i J. McKenzie. Interstellar magnetic field effects on the termination shock, heliopause, and bow-shock: Aligned MHD flow. J. Geophys. Res., 108:1071, 10.1029/2002JA0009560, 2003.
  • R. Ratkiewicz, A. Barnes, G. A. Molvik, J. R. Spreiter, S. S. Stahara, M. Vinokur, i S. Venkateswaran. Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations. A&A, 335:363-369, 1998.
  • S. Redfield i J. L. Linsky. The Structure of the Local Interstellar Medium IV: Dynes mics, Morphology, Physical Properties, and Implications of Cloud-Cloud Inter tions. ArXiv e-prints, 709, 2007.
  • H. Reeves, J. Audouze, W. A. Fowler, i D. N. Schramm On the Origin of Light Elements. ApJ, 179:909-930, 1973.
  • F. Robert, D. Gautier, i B. Dubrulle. The Solar System d/h Ratio: Observations and Theories. Space Sci. Rev., 92:201-224, 2000.
  • D. Roussel-Dupre. SKYLAB observations of H I Lyman-alpha. ApJ, 256:284-291, 1982.
  • D. Ruciński i M. Bzowski. Modulation of interplanetary hydrogen distribution during the solar cycle. A&A, 296:248-263, 1995.
  • D. Ruciński i M. Bzowski. Modelling of the interstellar hydrogen distribution in the heliosphere. Space Sci. Rev., 78:248-263, 1996.
  • D. Ruciński i H. J. Fahr. The influence of electron impact ionization on the distribution of interstellar helium in the inner heliosphere: Possible consequences for determination of interstellar helium parameters. A&A, 224:290-298, 1989.
  • D. Ruciński i H. J. Fahr. Nonthermal ions of interstellar origin at different solar wind conditions. Ann. Geophys., 9:102-110, 1991.
  • D. Ruciński, A. C. Cummings, G. Gloeckler, A. J. Lazarus, E. Möbius, i M. Witte. Ionization processes in the heliosphere - rates and methods of their determination. Space Sci. Rev., 78:73-84, 1996.
  • C. Salem, S. Hoang, K. Issautier, M. Maksimovic, i C. Perche. Wind-Ulysses in-situ thermal noise measurements of solar wind electron density and core temperature at solar maximum and minimum. Adv. Space Res., 32:491-496, 2003.
  • D. W. Savin. Rate Coefficients for D(1s)+H+↔D++H(1s) Charge Transfer and Some Astrophysical Implications. ApJ, 566:599-603, 2002.
  • H. Scherer, H. J. Fahr, M. Bzowski, i D. Ruciński. The Influence of Fluctuations of the Solar Emission Line Profile on the Doppler Shift of Interplanetary HLyα Lines Observed by the Hubble-Space-Telescope. Ap&SS, 274:133-141, 2000a.
  • K. Scherer, H. Fichtner, i E. Marsch, editors. The outer heliosphere: beyond the planets, May 2000b.
  • N. A. Schwadron i D. J. McComas. Heliospheric “FALTS”: Favored Acceleration Locations at the Termination Shock. Geophys. Res. Lett., 30:41-1, 2003.
  • N. A. Schwadron i D. J. McComas. Particle acceleration at a blunt termination shock. In J. Heerikhuisen, V. Florinski, G. P. Zank, i N. V. Pogorelov, editors, Physics of the Inner Heliosheath, volume 858 of American Institute of Physics Conference Series, pages 165-170, September 2006.
  • D. M. Sfeir, R. Lallement, F. Crifo, i B. Y. Welsh Mapping the contours of the Local bubble: preliminary results. A&A, 346:785-797, 1999.
  • G. Sitarski. Recurrent power series integration of the equations of comet’s motion. Acta Astron., 29:401-411, 1979.
  • J. D. Slavin i P. C. Frisch. The Ionization of Nearby Interstellar Gas. ApJ, 565: 364-379, 2002.
  • J. D. Slavin i P. C. Frisch. The Chemical Composition of Interstellar Matter at the Solar Location. Space Sci. Rev., 130A09 414, 2007a.
  • J. D. Slavin i P. C. Frisch. The Boundary Conditions of the Heliosphere: Photoionization Models Constrained by Interstellar and In Situ Data. ArXiv e-prints, 704, 2007b.
  • R. K. Smith i D. P. Cox. Multiple Supernova Remnant Models of the Local Bubble and the Soft X-Ray Background. ApJS, 134:283-309, 2001.
  • P. C. Stancil, S. Lepp, i A. Dalgarno. The Deuterium Chemistry of the Early Universe. ApJ, 509:1-10, 1998.
  • G. Steigman. On the Variation of Deuterium and Oxygen Abundances in the Local Interstellar Medium ApJ, 586:1120-1126, 2003.
  • G. Steigman. Primordial Nucleosynthesis:. Successes and Challenges. Mt. J. Mod. Phys. E, 15:1-35, 2006.
  • J. S. Stodółkiewicz. Astrofizyka ogólna z elementami geofizyki. Wydawnictwo Naukowe PWN, 1982.
  • J. Stoer i R. Bulirsch. Wstęp do metod numerycznych. Wydawnictwo Naukowe PWN, 1980.
  • E. C. Stone i A. C. Cummings. Estimate of the Location of the Solar Wind Termination Shock. In International Cosmic Ray Conference, volume 10 of International Cosmic Ray Conference, pages 4263-4266, August 2001.
  • E. C. Stone, A. C. Cummings, F. B McDonald, B. C. Heikkila, N. Lal, i W. R. Webber. Voyager 1 Explores the Termination Shock Region and the Heliosheath Beyond. Science, 309:2017-2020, 2005.
  • T. Summanen. The effect of the time and latitude-dependent solar ionisation rate on the measured Lyman-α-intensity. A&A, 314:663-671, 1996.
  • S. Tarnopolski i M. Bzowski Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure. ArXiv Astrophysics e-prints, 2007.
  • G. E. Thomas. The interstellar wind and its influence on the interplanetary environment. Annu. Rev. Earth Planet. Sci., 6:173-204, 1978.
  • G. E. Thomas i R. F. Krassa. Ogo-5 measurements of the Lyman Alpha sky back-ground. A&A, 11:218-233, 1971.
  • G. E. Thomas i R. F. Krassa. Ogo-5 measurements of the Lyman Alpha sky back-ground in 1970 and 1971. A&A, 30:223-232, 1974.
  • R. N. Thomas. The Source Function in a Non-Equilibrium Atmosphere. I. The Resonance Lines. ApJ, 125:260-274, 1957.
  • W. K. Tobiska i S. D. Bouwer. New developments in SOLAR2000 for space research and operations. Adv. Space Res., 37:347-358, 2006.
  • W. K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, i O. R. White. The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Tem Phys., 62:1233-1250, 2000.
  • V. Vasyliunas i G. Siscoe. On the flux and the energy spectrum of interstellar ions in the solar wind. J. Geophys. Res., 81:1247-1252, 1976.
  • J. L. Vergely, R. Freire Ferrero, A. Siebert, i B. Valette. NaI and HI 3-D density distribution in the solar neighbourhood. A&A, 366:1016-1034, 2001.
  • A. Vidal-Madjar. Evolution of the solar lyman alpha flux during four consecutive years. Sol. Phys., 40:69-86, 1975.
  • M. E. Wachowicz. Globalny model rozkładu stanów jonizacji ciężkich atomów plazmy słonecznej w heliosferze. Praca doktorska, Centrum Badań Kosmicznych PAN, 2006.
  • R. V. Wagoner, W. A. Fowler, i F. Hoyle. On the Synthesis of Elements at Very High Temperatures. ApJ, 148:3-49, 1967.
  • M. K. Wallis. Local interstellar medium Nature, 254:202-+, 1975.
  • R. S. Warwick, C. R. Barber, S. T. Hodgkin, i J. P. Pye. The EUV source population and the local bubble. MNRAS, 262:289-300, 1993.
  • C. S. Weller i R. R. Meier. Observations of helium in the interplanetary /interstellar wind: the solar - wake effect. ApJ, 193:471-476, 1974.
  • K. -P. Wenzel, R. G. Marsden, D. E. Page, i E. J. Smith Ulysses: The first highlatitude heliospheric mission. Adv. Space Res., 9:25-29, 1989.
  • K. Wilhelm, W. Curdt, E. Marsch, U. Schuhle, P. Lemaire, A. Gabriel, J. -C. Vial, M. Grewing, M. C. E. Huber, S. D. Jordan, A. I. Poland, R. J. Thomas, M Kuhne, J. G. Timothy, D. M. Hassler, i O. H. W. Siegmund. SUMER - Solar Ultraviolet Measurements of Emitted Radiation. Sol. Phys., 162:189-231, 1995.
  • K. Wilhelm, T. N. Woods, U. Schühle, W. Curdt, P. Lemaire, i G. J. Rottman. The solar ultraviolet spectrum from 1200 a to 1560 a: a radiometric comparison between sumer/soho and solstice/uars A&A, 352:321-326, 1999.
  • O. C. Wilson. A Suggested Mechanism for the Ejection of Matter from M-Type Stars. ApJ, 131:75-82, 1960.
  • M. Witte. Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument. A&A, 426:835-844, 2004.
  • T. N. Woods, W. K. Tobiska, G. J. Rottman, i J. R. Worden. Improved solar Lyman irradiance modeling from 1979 through 1999 based on UARS observations. J. Geophys. Res., 105:27195-27215, 2000.
  • F. M. Wu i D. L. Judge Temperature and velocity of the interplanetary gases along solar radii. ApJ, 231:594-605, 1979.
  • M. Wu i D. L. Judge. A reanalysis of the observed interplanetary hydrogen L alpha emission profiles and the derived local interstellar gas temperature and velocity. ApJ, 239:389-394, 1980.
  • D. G. York i Jr. J. B. Rogerson. The abundance of deuterium relative to hydrogen in interstellar space. ApJ, 203:378-385, 1976.
  • G. P. Zank, G. Li, V. Florinski, Q. Hu, D. Lario, i C. W. Smith. Particle acceleration at perpendicular shock waves: Model and observations. J. Geophys. Res., 111:6108-6124, 2006.
  • Z. X. Zhao, A. Igarashi, i C. D. Lin Hyperspherical calculations of H(1s)+μ+ rearrangement collision cross sections from threshold to 2 eV. Phys. Rev. A, 62:042706-042710, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0077-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.