831

PAK vol. 55, nr 10/2009

Krzysztof BUCHOLC
POZNAN UNIVERSITY OF TECHNOLOGY

Fault Attack Technique Against Software Implementation

of a Block Cipher

Dr inz. Krzysztof BUCHOLC

Is a senior lecturer in Poznan University of Technology.
He received a Ph.D. from Poznafn University of
Technology in 1989. His main research areas are:
computer architecture, embedded systems, reliability
and diagnosis of computer hardware. He is the author
or coauthor of more than 50 published papers, 2
patents and 1 textbook.

e-mail: Krzysztof.Bucholc@.put.poznan.pl

Abstract

In this paper a fault attack technique against software implementation of
a block cipher is described. Implementation for 8-bit processor (similar to
those used in embedded applications e.g. smart cards) was examined.
There is shown that 2 specific pairs plaintext — faulty ciphertext suffice to
break the cipher. The method was illustrated in PP-1 cipher, but it is
applicable to any software implementations of the Substitution-
Permutation Networks such that the main key, or all the round keys. It can
be deduced from round key for the first round.

Keywords: block cipher, software implementation, fault attack.

Techniki ataku polegajace na wprowadzaniu
defektéw do programowej implementaciji
szyfru blokowego

Streszczenie

W artykule przedstawiono atak na szyfr blokowy przy uzyciu celowo
wprowadzanych defektow. Taka metoda ataku (ang. fault attack) nalezy do
najskuteczniejszych metod tamania szyfrow. Najczesciej wykorzystywana
jest do atakowania implementacji sprzgtowych szyfru. W prezentowanej
pracy za przedmiot badan wybrano implementacj¢ programowa, przy czym
procesor wraz z programem W pamigci traktowany byt jak uktad
sprzgtowy. Wybrano 8-bitowy procesor (podobny do wykorzystywanego
w kartach procesorowych (ang. smart cards)). Eksperymenty przeprowadzono
postugujac si¢ specjalnie opracowana maszyna wirtualng rozszerzona
o modul do wstawiania uszkodzen. Wykorzystano nastgpujace modele
uszkodzen: sklejenie z zerem, sklejenie z jedynka i odwrdcenie wartosci
bitu. Przedmiotem eksperymentow byl szyfr blokowy o nazwie PP-1.
W pracy krétko przedstawiono zasad¢ dziatania algorytmu szyfrujacego.
Nastgpnie przeanalizowano wplyw defektow na wyniki szyfrowania.
Rozwazono defekty pojedyncze i wielokrotne. Szczegdlng uwage
zwrocono na pojawianie si¢ wynikow odpowiadajacych wersji szyfru
zredukowanej do jednej rundy. (Normalnie szyfr wykorzystuje 11 rund).
Jednorundowe wersje szyfrow blokowych sa bardzo tatwe do ztamania.
Badania wykazaly, ze prawdopodobiefistwo wystapienia wyniku
odpowiadajacego jednorundowej wersji szyfru jest wystarczajaco duze, aby
mozna bylo zastosowaé t¢ technik¢ ataku w praktyce. Stwierdzono takze,
ze pewne obszary pamigci programu sg bardziej wrazliwe na defekty niz
inne. Koncentrujac si¢ na obszarach wrazliwych mozna znaczaco
zwigkszy¢ prawdopodobienstwo sukcesu.

Stowa kluczowe: szyfr blokowy, implementacja programowa, atak
z wykorzystaniem defektow.

1. Introduction

Errors in an encryption circuit not only disturb communication
but also cause hazard for the cipher safety. Encryption circuits are
often objects of deliberate error injection, while it is rather rare the
case in other sort of digital circuits. Block ciphers can be
implemented both in hardware and in software.

The influence of errors on hardware implementation of block
ciphers was an object of substantial research effort in last few
years [1, 2, 3].

Errors inserted on purpose cause hazard for the cipher security.
For example error can reduce the number of rounds or affects the
round key schedule procedure in such a way that all the round
keys will be the same. In such case the cipher can be easily broken
[5, 6].

For example the only successful attacks against AES [7]
implementations have been side channel attacks, exploiting
information from a physical implementation of the cipher, such as
timing information, power consumption, electromagnetic leaks
etc. or fault attacks. The algorithm itself is considered as secure.

In our research we consider the software implementation of the
PP-1 cipher treated as a piece of hardware. It means that the
processor and the program are treated like the encryption circuit.
The main objective was to establish to what extend the software
implementation of the PP-1 is vulnerable to fault attacks. It is
intended as an introductory step to implement tamper resistant
implementation of the PP-1.

There are many works describing how to insert faults into
cryptographic circuit [8]. In this paper we simply assume that this
is possible and focus on the results.

To break the cipher means to find the secret key. In this paper
this term is used for finding the secret key or finding all the round
keys.

The paper is organized as follows: Section 2 contains short
description of the PP-1 cipher. In section 3 we describe
experiment with fault insertion to software implementation of the
PP-1 block cipher. Section 4 contains brief analysis of the
influence of errors on the PP-1 safety. Section 5 contains some
concluding remarks.

2. Overview of the PP-1 structure

The PP-1 [4] is an n-bit (n = 64, 128, 192, ...) scalable block
cipher. The key length is n or 2n. The PP-1 is an involutional
Substitution-Permutation Network. It uses one S-box, which is an
involution and a bit permutation, which also is an involution. As a
result the same algorithm can be used both for encryption and
decryption. The PP-1 structure is shown in Fig.1 and Fig.2.

Xi
e
/t” Round #i |
-- I
|
64 64 64 :

Vi n

Fig. 1. The PP-1 cipher
Rys. 1. Szyfr PP-1

832

Fig. 2. The structure of NL element
Rys. 2. Struktura elementu NL

Symbols @, +,— stand for xor, addition, and subtraction, on
8-bit arguments. The S element is an 8x8 S-box. The P block is an
n-bit permutation. The number of rounds depends on #n. There are
11, 22, 32 and 43 rounds for n=64, 128, 192, 256 respectively. In
each round two n-bit round keys are used.

Results presented in this paper are obtained for the 64-bit data
block 128-bit key version of PP-1.

3. Analysis of faults influence on encryption
process

3.1. Investigated implementation

For simulation of the faulty encryption device an assembler
implementation of PP-1 for 8-bit processor (8080) installed on
virtual machine was used. The virtual machine was specially
written for this purpose and augmented with program for fault
insertion, and results collection.

The 8080 architecture was chosen as a model of 8-bit processor.
It is close to architectures used in 8-bit embedded systems, but it is
simpler. Only main data processing path of the cipher was
implemented. Round keys were computed separately. The
program encrypts one 64-bit data block using 128-bit key. Its size
is 814 bytes.

3.2. The fault model

Fault can be either a hardware defect or a software mistake.
Fault may or may not cause an error. It means that an error is
a manifestation of a fault. In our experiment we focus on faults in
memory containing the encryption/decryption program.

Three types of faults were considered: stack bit at zero (s-a-0),
stack bit at one (s-a-1), and invert bit (bit-flop). Single and
multiple faults were investigated. For single and double faults all
possibilities were checked. For 3 faults and more (up to 30), faults
were chosen in random. We focused on the case where one or
several faults were inserted. In real systems it is often difficult to
insert precisely one fault. One to several is more probable.

3.3. Results of the experiments

Each experiment consists of four stages: loading the program into
virtual machine, fault insertion, performing of encryption and
recording results. Five types of results were considered: proper,
improper corresponding to 1 round version of PP-1, other improper,
no result, and infinite loop. The most interesting is improper
corresponding to 1 round version result, because it is most useful for
breaking the cipher. Details are described in the next section.

PAK vol. 55, nr 10/2009

For each fault model and for each number of faults the
experiment was repeated 10 000 times. Summarized results for
single fault and multiple faults are shown in Table 1 and Table 2.

Tab. 1. Single faults
Tab. 1. Pojedyncze defekty

Fault model | Proper | Noresult | Round 1 | Different results | Infinite loop
s-a-0 7791 305 48 727 114
s-a-1 6528 588 125 1137 216

Bit flop 4519 893 173 1759 330

Tab. 2. Multiple faults (bit flop model)
Tab. 2. Defekty wielokrotne (model: odwrdcenie bitu)

Nu;n bler of Proper | Noresult [Round 1 Different faulty Infinite loop

aults results
1 4519 893 173 1759 330
2 2016 1738 212 3111 591
3 891 2430 203 4012 799
4 447 3050 184 4333 967
5 183 3604 157 4293 1107
6 93 4152 126 4069 1205
7 46 4599 99 3819 1336
8 22 4927 67 3590 1374
9 6 5259 48 3342 1404

As we can se in Tables 1 and 2, for single fault and for 2 to 8
faults, significant percentage of the results correspond to those for
1 round version of PP-1 (with the same key). In section 4 we will
exploit this for attack on the cipher.

Some parts of the cipher implementation may be more
vulnerable to faults than other. To check this, the whole memory
space occupied by the application was divided into 10 intervals.
For each interval round 1 results to different faulty results ratio
was calculated. Results for single fault bit flop model are shown in
Fig. 3.

o

Percentage of 1 round results
o - N W A « O ~N o ©
|
|
|
|
|

Memory sub-area

Fig. 3. Distribution of round 1 results to the number of all erroneous results ratio
Rys. 3. Udzial wynikow dla pierwszej rundy w zaleznosci od obszaru pamigci

As was expected, some areas are more vulnerable. It would be
profitable to locate them when breaking real circuit. But the
average ratio — about 2% is also very interesting.

4. The attack

4.1. General concept

Let us assume that there is an encryption device with
a processor. We can use it for the encryption any data but the key
is secret. We have access to the device and we can insert randomly
faults into its memory. Our goal is to find the secret key.

PAK vol. 55, nr 10/2009

Let us assume that we can perform a series of experiments with
our encryption device inserting faults during the encryption
process. We get a series of results. Some of these results are
proper, and some are erroneous. Among erroneous results some
are the same as results for fault-free one-round version of the
cipher with the same key.

It is well known that one round block cipher can be easily
broken (e.g. only 2 pairs plaintext-ciphertext are required to brake
one round AES [5]).

We do not know which result corresponds to those produced by
the one round version of the cipher. But we can check every
obtained result. In this way we get round key (in PP-1 two round
keys) for round 1. Knowing the first round key (keys), we can find
the main key or find all the next rounds keys we will break the
whole cipher. For PP-1 this is quite simple as the first round keys
(denoted as #0 round in algorithm description [4]) consist of two
halves of the main key.

Two interesting problems arise:

- What is the complexity of restoring the key?

- How many experiments with fault insertion are required to
obtain “good” (useful for cipher breaking) faulty ciphertexts
with given probability?

We will address these problems below.

4.2. Attack with one faulty ciphertext

In this section we will focus on the PP-1 cipher shown in Fig. 1
and Fig. 2. Only one NL element is used. Let us assume that we
obtained one faulty ciphertext, which corresponds to round 1. Let
us consider the right-most 8-bit section in Fig.2.

We denote the 8-bit right-most parts of k,” and k,” by k1, k2,
the 8-bit right-most part of the plaintext by m, and the 8-bit right-
most part of ciphertext by c.

In this case

c=Sm®k)D k2)

K2=Sm®k)®c ©)

Similarly for 8-bit section with operations plus and minus
(Fig.2) we have
c=S(m+kl)-k2 3)

k2=S(m+kl)—c 4

There are 2° (256) pairs of k1, k2 that satisfy (2). The same is
true for (4). It means that 128-bit key can be broken using 2 pairs
plaintext ciphertext instead of 2'*® required in brute-force method.

4.3. Attack with two faulty ciphertexts

Let us assume that we have two different pairs plaintext
ciphertext (ml,cl) (m2,c2) for round 1. For xor xor section
(Fig. 2) we have the system of equations:

cl=S(ml @ k1)@ k2 5)
2=Sm2® k) ® k2

Similarly, for plus minus section we have:

el =S(ml+kl)—k2 (©6)
2 =S(m2+kl)—k2

We know ml, cl, m2, ¢2 and we want to find k1, k2. The
problem is: how many solutions there exist for systems of
equations (5), and (6)?

The answer is not obvious because of the nonlinear element S.
Solutions were found by checking all possible m1, m2, c1, ¢2 such
that m1#m2 and c1#c2. Results are shown in Tables 3 and 4.

833

Tab. 3. Solutions distribution for xor xor
Tab. 3. Rozktad rozwiazan dla xor xor

Solutions count Found times %
0 1076920320 50,54
1 0 0
2 1038090240 48,72
3 0 0
4 15728640 0,74
Total 2130739200 100

Tab. 4. Solutions distribution for plus minus
Tab. 4. Rozklad rozwiazan dla plus minus

Solutions count Found times %
0 779812864 36,5982
1 784203776 36,8043
2 392986624 18,4437
3 135462912 6,3576
4 30998528 1,4548
5 5505024 0,2584
6 1376256 0,0646
7 393216 0,0185
Total 2130739200 100

As we can see in Table 3, if a solution for xor xor exists, there
are 2 unequally distributed possibilities: in about 98.5% we get
two pairs of k1, k2 whereas in about 1.5% cases we have 4
different pairs of k1, k2. For plus minus section there exist from 1
to 7 solutions (Table 4).

We will use these results to estimate the number of pairs
plaintext ciphertext required to break the cipher. As we can see in
Fig.2 there are four xor xor sections and for plus minus sections
(the order of operations + — is of no importance). The smallest
possible numbers of solutions are 2 for xor xor and 1 for plus
minus. The total number of pairs plaintext ciphertext required to
break the cipher is:

Lmin=2*x1*=16 (7

The biggest possible numbers of solutions are 4 for xor xor and
7 for plus minus. In this case the total number of pairs plaintext
ciphertext required to break the cipher is:
Lmax =4*x7" = 614656 ®)
Weighted average is:
Laverage = 466.00215 ©)]
Generally for PP-1 with »-bit data block and 2n-bit key we have

Lmax _n=4""%x7"" (10)

Results (7), (8), (9) and (10) show that attack with two faulty
ciphertexts is much more practical than the attack with one faulty
ciphertext. The main problem is to find two different pairs
plaintext faulty ciphertext such that m1#m2 and cl#c2 are proper
results for round 1. We will address this problem in the next
section.

4.4. Obtaining faulty ciphertexts
In section 3 we presented results of the experiments with faults

insertion. Now we use these results to estimate the number of
experiments needed to obtain the required two faulty ciphertexts.

834

We need to perform two series of experiments with fault insertion
— one series for each plaintext. The probabilities of finding the
required faulty ciphertext are shown in Table 5. We considered 2
cases:

- faults equally distributed,

- faults focused on sensitive area (see Fig. 3).

As it can be seen in Table 5, to find faulty ciphertext with
probability 90% requires 145 experiments, when faults are equally
distributed, whereas 26 experiments suffice when faults are
focused on sensitive area. Two series of experiments are required
to obtain 2 faulty ciphertexts.

Tab. 5. Probability of finding the faulty ciphertext useful for breaking the cipher
Tab. 5. Prawdopodobiefistwo znalezienia btednego kryptogramu przydatnego do
ztamania szyfru

Number of Probability of finding round 1 ciphertext
experiments Equally distributed Sensitive area
10 0,160135 0,596201
20 0,294627 0,836946
26 0,364750 0,905370
50 0,582124 0,989264
60 0,649040 0,995665
70 0,705241 0,998250
80 0,752442 0,999293
90 0,792085 0,999715
100 0,825379 0,999885
145 0,901828 0,999994
150 0,927030 0,999999
200 0,969508 0,99999999

5. Conclusion

The basic idea of the proposed attack is to get erroneous result
of the encryption by inserting fault (faults). We considered two
cases. Attack with one faulty ciphertext and attack with two faulty
ciphertext. We assume that erroneous result is those produced by 1
round and verify this hypothesis.

The attack with two faulty ciphertexts is more practical, despite
the fact that more experiments with fault insertion are required to

PAK vol. 55, nr 10/2009

obtain 2 faulty ciphertext, because it requires less processing to
verify found solutions. For example expected time of all
computations needed to find the key with probability 0.99 is less
than half second on notebook with 2 GHz Celeron M processor.

We focused on PP-1, but this approach is applicable to any
software implementations of Substitution-Permutation Networks
such that the main key or all the round keys can be deduced from
round key for the first round.

This research also proved that considered implementation of
PP-1 is very vulnerable to fault attack. Further work is required to
obtain more tamper resistant implementation of the PP-1.

6. References

[1] Bertoni G., Bregeveglieri L., Koren 1., Maistri P., An Operation-
Centered Approach to Fault Detection in Symmetric Cryptography
Ciphers, IEEE Trans. On Computers Vol. 56 No 5, May 2007, pp.
635-649.

[2] Bertoni G., Bregeveglieri L., Koren I., Maistri P., Piuri V., Error
Analysis and Detection Procedures for a Hardware Implementation of
the Advanced Encryption Standard, IEEE Trans. On Computers
Vol. 52 No 4, April 2003, pp.492-505.

[3] Bucholc K., Idzikowska E , Multiple Error Detection in Substitution
Blocks for Block Ciphers. Advances in Information Processing and
Protection, ed. J.Pejas and K.Saeed, Springer US, 2007, pp. 181-190.

[4] Chmiel K., Grocholewska-Czurylo A., P. Socha, Stoktosa J., Scalable
cipher for limited resources. Polish Journal of Environmental Studies,
Vol. 17/4C/2008 pp. 371-377.

[5] Joye M., Mannet P., Rgaud J.-B., Strengthening hardware AES
implementations against fault attacks, IET Inf. Secur., vol. 1, 2007,
pp-106-110.

[6] National Inst. Of Standards and Technology, Federal Information
Processing Standard 197, The advanced Encryption Standard (AES),
Nov. 2001,http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[7] Piret G. and Quisquater J.-J., A differential fault attack technique
against SPN structures, with application to the AES and Khazad, Proc.
of CHES 2003, pp. 77-88.

[8] Skorobogatov S. and Anderson R.. Optical fault induction attacks.
Cryptographic Hardware and Embedded Systems Workshop (CHES-
2002), pages 2-12, 2002. Lecture Notes in Computer Science No. 2523.

Artykut recenzowany

INFORMACJE

Zapraszamy do publikacji artykutéw naukowych
w czasopismie PAK

WYDAWNICTWO POMIARY AUTOMATYKA KONTROLA
ul. Swietokrzyska 14A, pok. 530, 00-050 Warszawa,
tel./fax: 022 827 25 40

Redakcja czasopisma POMIARY AUTOMATYKA KONTROLA
44-100 Gliwice, ul. Akademicka 10, pok. 30b,
tel./fax: 032 237 19 45, e-mail: wydawnictwo@pak.info.pl

