820

Dariusz BURAK, Piotr BLASZYNSKI
WEST POMERANIAN UNIVERSITY OF TECHNOLOGY,

PAK vol. 55, nr 10/2009

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

Parallelization of the Camellia Encryption Algorithm

Dr inz. Dariusz BURAK

Received the PhD degree in computer science in 2007
from Szczecin University of Technology. He is an
assistant professor of the computer science at the West
Pomeranian University of Technology. His current
research interests are focused on cryptography and
compiler optimizations.

e-mail: dburak@wi.zut.zut.edu.pl

Dr inz. Piotr BLASZYNSKI

Received the PhD degree in computer science in 2004
from Szczecin University of Technology. He is an
assistant professor of the computer science at the West
Pomeranian University of Technology. His current
research interests are focused on embedded systems
and advanced compilers techniques.

e-mail: pblaszynski@wi.zut.zut.edu.pl

Abstract

A parallelization process of the Camellia encryption algorithm along with
the description of exploited parallelization tools is presented. The data
dependency analysis of loops and the loop transformations were applied in
order to parallelize the sequential algorithm. The OpenMP standard was
chosen for representing parallelism of the cipher. Speed-up measurements
for a parallel program are presented.

Keywords: Camellia encryption algorithm, parallelization, data dependency
analysis, OpenMP.

Zrownoleglenie algorytmu szyfrowania
Camellia

Streszczenie

W artykule przedstawiono proces zréwnoleglenia japonskiego standardu
szyfrowania danych - blokowego algorytmu szyfrowania Camellia,
bazujacego na sieci Feistela, pracujacego w trybie pracy ECB. Kroétko
opisano wykorzystane do tego celu narzgdzia programowe: program Petit,
ktory shuizy do analizy istniejacych zaleznosci danych w petlach
programowych oraz OpenMP API. W celu zréwnoleglenia algorytmu
sekwencyjnego zastosowano analiz¢ zaleznosci danych oraz dokonano
przeksztatcen petli programowych w celu wyeliminowania istniejacych
zaleznosci petli blokujacych proces ich zréwnoleglenia. Do prezentacji
réwnolegtosci szyfru wybrano jezyk C oraz standard OpenMP. Zataczono
réwniez wyniki pomiardw przyspieszenia pracy programu rownoleglego
oraz najbardziej czasochfonnych petli, ktére sa odpowiedzialne za proces
szyfrowania oraz deszyfrowania danych dla dwoch, czterech, osmiu oraz
szesnastu procesoréw oraz dla dwdch, czterech, o$miu oraz szesnastu
watkow utworzonych z zastosowaniem kompilatora Intel® C++
w wersji.11.0 zawierajacego OpenMP API w wersji 3.0. Najbardziej
czasochlonne petle zostaly w pelni zréownoleglone, natomiast
przyspieszenie pracy calego programu, zgodnie z prawem Amdahla jest
zredukowane z uwagi na wystgpowanie w kodzie programu cze¢sci
sekwencyjnej, zawierajacej sekwencyjne operacje wejscia- wyjscia shuzace
do odczytu danych z pliku, oraz zapisu danych do pliku. Wyniki
zrownoleglenia opisane w artykule moga by¢ pomocne do implementacji
sprzgtowych algorytmu Camellia.

Stowa kluczowe: algorytm szyfrowania Camellia, zrownoleglenie, analiza
zaleznosci danych, OpenMP.

1. Introduction

One of the most important functional features of cryptographic
algorithms is a cipher speed, and thus even a little difference of
speed may cause the choice of the faster cipher by the user.
Therefore, it is so important to enable the use of Shared Memory
Parallel Computers for cryptographic algorithms processing. The
paper describes a software approach based on the transformations
of a source code written in C language representing the sequential
Camellia encryption algorithm. However, the creation of parallel
algorithms is connected with the current world tendency towards
the hardware implementation of cryptographic algorithms,

because we also need parallel algorithms in this case. The major
purpose of this paper is to present a parallelization process of the
Camellia encryption algorithm along with the description of
exploited parallelization tools. The paper is organized as follows.
In section 2, the Camellia encryption algorithm is briefly
described. Section 3 contains a brief description of data
dependency analysis and the Petit program. Section 4 discusses
parallelization process of the Camellia encryption algorithm.
Section 5 shows experimental results regarding the application
efficiency of the parallelized Camellia algorithm. Conclusion
remarks are given in Section 6.

2. The Camellia encryption algorithm

Camellia is a block cipher developed by Nippon Telegraph &
Telephone Corporation and Mitsubishi Electric Corporation in
2000 [1]. Camellia was chosen as a recommended algorithm by
the NESSIE (New European Schemes for Signatures, Integrity and
Encryption) project in 2003 [2] and also was certified as the IETF
(Internet Engineering Task Force) standard cipher for XML
security URIs [3], SSL/TLS cipher suites [4] and [Psec in 2005 [5].

Camellia is based on the Feistel network that operates on
128-bit data blocks with a 128-bit, 192-bit or 256-bit key and with
22-rounds (28-rounds for 192-bit and 256-bit key) data processing
composed of three main parts: an 18-rounds Feistel structure
(24-rounds Feistel structure for 192-bit and 256-bit key), two FL
and FL-1 functions and two input/output whitenings.

In Camellia, four types of S-boxes are applied and each one
consists of a multiplicative inversion and affine transformations.
A linear 64-bit permutation follows the nonlinear substitution of
S-boxes. The FL and FL-1 functions inserted every 6 rounds are
used to provide non-regularity between the rounds. These two
functions are similarly constructed by logical operations including
AND, OR, XOR, and rotations.

The decryption process is performed in the same way as
encryption one except the subkeys should be used in a reverse
order. The key scheduler shares part of the process with
encryption and has additional rotations of the subkeys.

Camellia encryption algorithm is the international standard
cipher-alternative to the Advanced Encryption Standard (AES).

Camellia essential patents can be used at no charge by any
Camellia user [6].

NTT publishes NTT’s open source codes of Camellia free of
charge through multiple open source software licences (GPL,
LGPL, BSD, MPL, and OpenSSL) [7].

3. Data Dependency Analysis
In order to parallelize loops contained in the Camellia

encryption algorithm data dependency analysis using Petit
program was performed.

821

PAK vol. 55, nr 10/2009

Developed at the University of Maryland under the Omega
Project and freely available for both DOS and UNIX systems,
Petit program is a research tool for analyzing array data
dependences [8]. Petit operates on programs in a simple Fortran-
like language and provides indispensable information about the
following data dependences that occur in the analyzing loop:
value- based dependences, memory- based dependences, loop
carried dependences, data flow dependences, antidependences and
output dependences.

There are the following three types of data dependences
blocking parallelism in ”for” loops [9, 10]:

1. Data flow dependence indicates that a write-before-read
ordering must be satisfied for parallel computing.

2. Antidependence indicates that a read-before-write ordering
should not be violated for parallel computing.

3. Output dependence indicates a write-before-write ordering for

parallel processing. .

There is also another type of dependence called control
dependence. In this case, value of variable (in S2) depends on the
flow of control (in S1) like in the following example:

for(int i=0; i<n; i++) {

S1: if(x!=0)
S2:y=1.0/x;
1.

All of the above loops cannot be executed in parallel in such
a form, because results generated by the loops would be not the
same as whose yielded with sequential loops. Thus, it is necessary
to transform these loops so as to eliminate such dependences.

4. Parallelization process of the Camellia
encryption algorithm

In order to present parallelized source code of the Camellia
encryption algorithm the OpenMP API was applied.

The OpenMP Application Program Interface (API) supports
multi-platform shared memory parallel programming in C/C++
and Fortran on all architectures including Unix and Windows NT
platforms. OpenMP is a collection of compiler directives, library
routines and environment variables that can be used to specify
shared memory parallelism. OpenMP directives extend a sequential
programming language with Single Program Multiple Data
(SPMD) constructs, work-sharing constructs and synchronization
constructs and enable to operate on private data. An OpenMP
program begins execution as a single task called the master thread.
When parallel construct is encountered, the master thread creates
a team of threads. The statements within parallel construct are
executed in parallel by each thread in the team. At the end of the
parallel construct, all threads in the team are synchronized. Then
only the master thread continues execution until the next parallel
construct will be encountered [11].

In order to parallelize the Camellia encryption algorithm in the
ECB mode, it was used sequential Camellia algorithm module
written in ANSI C language- version M1.02 derived from the
original code furnished in open source by NTT and Mitsubishi
Electric Corporation [7]. This choice makes possible to perform
efficient parallelization in view of some advantageous features of
that source code (a high clarity, enclosing the most of
computations in iterative loops, a little number of used functions).
In order to enable enciphering and deciphering the whichever
number of data blocks, we have created two new functions,
the Camellia_enc() for the encryption process (based on
Camellia_Encrypt()) and the Camellia dec() for the decryption
process (based on Camellia Decrypt()), by analogy with similar
functions included in the C source code of the cryptographic
algorithms (DES- the des enc(), the des dec(), LOKI91- the
loki_enc(), the loki dec, IDEA- the idea enc(), the idea dec(),
etc.) presented in [12].

The process of the Camellia encryption
parallelization can be divided into the following stages:
1. Finding the most time-consuming functions of the Camellia

encryption algorithm;

2. Making preliminary transformations of the most time-
consuming loops;

3. Data dependency analysis of the most time-consuming loops
using Petit program;

4. Removal of data and control dependences (when it is possible);

5. Constructing parallel loops (in accordance with the OpenMP
standard);

6. Verification of a parallelized source code.

It has been carried out experiments with the sequential Camellia
encryption algorithm that encrypts and then decrypts 3 megabytes
plaintext in order to find the most time-consuming functions
including no I/O functions. It has been discovered that such
functions are included in the Camellia enc() and in the
Camellia_dec() thus their parallelization is critical for reducing the
total time of the algorithm execution.. Taking into account the
strong similarity of both loops we show only Camellia_enc()
function:

algorithm

void Camellia_enc(const int n, const Byte *p, const Byte *e,
Byte *c, int blocks) {

int i, ii;

for (ii=0; ii<blocks; ii++) {

XorBlock(p+16*ii, e+0, c+16*ii);

for(i=0; i<3; i++){

Camellia_Feistel(ct+0+16%*ii, e+16+(i<<4), c+8+16*ii);
Camellia_Feistel(c+8+16%*ii, e+24+(i<<4), c+0+16*ii);

}
Camellia_FLlayer(c+16%*ii, e+64, e+72);
for(i=0; i<3; i++){
Camellia_Feistel(c+0+16*ii, e+80+(i<<4), c+8+16*ii);
Camellia_Feistel(c+8+16%*ii, e+88+(i<<4), c+0+16*ii);

Camellia_FLlayer(ct+16%*ii, e+128, et+136);

for(i=0; i<3; i++){

Camellia_Feistel(ct0+16%*ii, e+144+(i<<4), c+8+16%ii);
Camellia_Feistel(c+8+16*ii, e+152+(i<<4), c+0+16%*1i);

}

if(n==128){

SwapHalf(ct+16*ii);

XorBlock(c+16*ii, e+192, ct+16*ii);

}

else {

Camellia_FLlayer(c+16%*ii, e+192, e+200);

for(i=0; i<3; i++){

Camellia_Feistel(c+0+16*ii, e+208+(i<<4), c+8+16%*1i);
Camellia_Feistel(c+8+16*ii, e+216+(i<<4), c+0+16*1i);
}

SwapHalf(c+16*ii);

XorBlock(c+16*ii, et256, ct+16*ii);

}

}

}.

The parallelization process is presented only for the loops
included in function Camellia _enc() (however, this analysis is
valid also for the second one).

We have chosen to make parallelization of the outer loop
(indexed by the variable ii) in order to parallelize the source code
included in this function and exploit the coarse- grained data
parallelism available at the loop level. Among others, four not
perfectly nested loops (indexed by the variable i) are included in
the outer loop. Therefore, we exploit the coarse- grained data
parallelism available at the outer loop level.

To remove data dependences existing in the source code we
have to make the privatization of the following variables: i, ii.

822

The source code of the outer loop is suitable to apply the
following OpenMP API constructs [13, 14]:
- parallel region construct (“parallel” directive)
- work-sharing construct (“for” directive)- all the iterations of the
associated loop can be executed in parallel in this case.
Thus the Camellia_enc() function with the parallelized most
time-consuming loop has the following form (in accordance with
the OpenMP API):

void Camellia_enc(const int n, const Byte *p, const Byte *e,
Byte *c, int blocks) {

int i, ii;

#pragma omp parallel private(i,ii)

#pragma omp for

for (ii=0; ii<blocks; ii++) {

...//body of the loop

}.

5. Speed-up measurements

In order to study the efficiency of the parallel code the
computer with the following features was used:
- 8 x Quad Core Intel Xeon Processor Model E7310,
- the openSuse 11.1 operating system,
- the Intel® C++ Compiler ver.11.0 (that supports the OpenMP 3.0).
The results received for the plaintext of the size about 10
megabytes are shown in Table 1.
The total running time of the Camellia encryption algorithm
consists of the following time-consuming operations:
1. Data reading from an input file;
2. Data encryption;
3. Data decryption;
4. Data writing to an output file (both encrypted and decrypted
text).

Tab. 1. Speed-up measurements of the Camellia encryption algorithm in the
ECB mode

Tab. 1. Wyniki pomiarodw przyspieszenia pracy algorytmu szyfrowania
Camellia w trybie pracy ECB

No. of No. of Speed-up
processors threads Encryption Decryption Total
1 1 1.0 1.0 1.0
2 2 1.8 2.0 14
4 4 3.2 3.7 1.8
8 8 3.8 42 2.1
16 16 37 4.1 2

The total speed-up of the parallelized Camellia encryption
algorithm depends considerably on the two major factors:

- whether the most time-consuming loops are parallelizable
- the method of data reading and data writing.

The results confirm that the paralleled codes of the most time-
consuming loops (placed in the Camellia enc() and the
Camellia_dec() functions) have sufficient efficiencies. The block
method of reading data from an input file and writing data to an
output file was used. The following C language functions and
block sizes were applied:

- the fread() function (with the 32-bytes block for data reading),

- the fwrite() function (with the 512-bytes block for data writing),
(the optimal sizes of the blocks were chosen via the appropriate
number of tests with various block sizes).

In accordance with Amdahl’s Law [15, 16] the maximum
speed-up of the whole Camellia algorithm is limited to 5.55,
because the fraction of the code that cannot be parallelized is
0.180. This fraction is calculated as the quotient of the sum of the

PAK vol. 55, nr 10/2009

execution time of all unparallelizable operations divided by the
execution time of the whole algorithm.

6. Conclusions

In this paper, the parallelization process of the Camellia
encryption algorithm was described. This algorithm could be
divided into parallelizable and unparallelizable parts. It was shown
that the most time-consuming iterative loops (responsible for the
data blocks encryption and the data blocks decryption) are fully
parallelizable. In order to parallelize these loops it is necessary to
make appropriate transformations of the source code of these
loops (as was described in Section 4). The experiments carried out
on the multiprocessor computer (with four- core processors) with
one, two, four, eight and sixteen threads show that the application
of the parallel Camellia encryption algorithm considerably boost
the time of the data encryption and decryption processes. The rest
of the time-consuming parts of code, contains I/O functions that
are unparallelizable because the access to memory is, by its very
nature, sequential. Hence, the total speed-up is less than that for
the parallelizable part. The parallel Camellia encryption algorithm
presented in this paper can be also helpful for hardware
implementations. The hardware synthesis of the Camellia
encryption algorithm will depend on the appropriate adjustment of
the data transmission capacity and the computational power of
hardware.

7. References

[1] Aoki K., Ichikawa T., Kanda M., Matsui M., Moriai S., Nakajima J.,
and Tokita, T.: Camellia: A 128-Bit Block Cipher Suitable for
Multiple Platforms - Design and Analysis -, In Selected Areas in
Cryptography, 7th Annual International Workshop, SAC 2000,
August 2000, Proceedings, Lecture Notes in Computer Science 2012,
pp-39-56, Springer-Verlag, 2001.

[2] The NESSIE project (New European Schemes for Signatures,
Integrity and Encryption), http://www.cryptonessie.org

[3] IETF RFC 4051 Additional XML Security URIs, April 2005,
http://www ietf.org/rfc/rfc4051.txt

[4] IETF RFC 4132 Addition of Camellia Cipher Suites to Transport
Layer Security (TLS), July 2005, http://www.ietf.org/rfc/rfc4132.txt

[5] IETF RFC 4312 The Camellia Cipher Algorithm and Its Use With
IPsec, December 2005, http://www.ietf.org/rfc/rfc4312.txt

[6] http://info.isl.ntt.co.jp/crypt/eng/camellia/intro.html

[7] http://info.isl.ntt.co.jp/crypt/eng/camellia/source.html

[8] Kelly W., Maslov V., Pugh W., Rosser E., Shpeisman T., Wonnacott
D.: New User Interface for Petit and Other Extensions. User Guide,
1996.

[9] Moldovan D.I.: Parallel Processing. From Applications to Systems,
Morgan Kaufmann Publishers, Inc., 1993.

[10]Allen R., Kennedy K.: Optimizing compilers for modern
architectures: A Dependence-based Approach, Morgan Kaufmann
Publishers, Inc., 2001.

[11]Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon
R.: Parallel Programming in OpenMP, Morgan Kaufmann Publishers,
Inc., 2001.

[12]Schneier B.: Applied Cryptography: Protocols, Algorithms, and
Source Code in C, Second Edition, John Wiley & Sons, 1995.

[13]Quinn M.J.: Parallel Programming in C with MPI and OpenMP,
McGraw-Hill, 2004.

[14]OpenMP Application Program Interface, Version 3.0, May 2008.

[15]Amdahl G.M.: Validity of the Single-Processor Approach to
Achieving Large Scale Computing Capabilities, In AFIPS Conference
Proceedings, 1967.

[16]Bielecki W.: Essentials of parallel and distributed computing,
Informa, 2002.

Artykul recenzowany

