807

PAK vol. 55, nr 10/2009

WIlodzimierz BIELECKI ', Marek PALKOWSKI ', Anna BELETKSA 2
"WEST POMERANIAN UNIVERSITY OF TECHNOLOGY, DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

?INRIA SACLAY, FRANCE

Extracting representative loop statement instances

of synchronization-free slices

Prof. dr hab. inz. Wlodzimierz BIELECKI

Prof. dr hab. inz. Wiodzimierz Bielecki is head of the
Software Technology Department of the West
Pomeranian University of Technology, Szczecin. His
research interest includes parallel and distributed
computing, optimizing compilers, extracting both fine-
and coarse grained parallelism available in program
loops.

e-mail: whielecki@wi.zut.edu.pl

Dr inz. Anna BELETSKA

She is graduated from the Technical University of
Szczecin in 2004, and has obtained her PhD degree in
Computer Science from Politecnico di Milano in 2008.
Currently she is carrying out Post Doctoral research in
INRIA, France, developing advanced coarse-grained
parallelization and code generation techniques to be
embedded into the GCC compiler. The main research
goal is to devise novel techniques for calculating the
transitive closure of a union of dependence relations and
apply them for extracting synchronization-free slices.

e-mail: anna.beletska@inria.fr

Dr inz. Marek PALKOWSKI

Obtained his PhD degree in Computer Science from
the Technical University of Szczecin, Poland. The
main goal of his research is extracting parallelism
from program loops and developing Iteration Space
Slicing Framework.

e-mail: mpalkowski@wi.zut.edu.pl

Abstract

Extracting synchronization-free parallelism by means of the Iteration
Space Slicing Framework consists of two steps. First, representative loop
statement instances of slices are extracted. Next, slices are reconstructed
from their representatives and parallel code scanning slices and elements
of each slice is generated. In this paper, we present how to benefit from
this technique in practice. We explain how to extract representative loop
statement instances of slices by means of the Omega Library enlarged by
four new functions allowing us to simplify the process of extracting slice
representatives. Results of experiments with the NAS and UTDSP
benchmarks are presented.

Keywords: synchronization-free slices, parallelism, representative loop
statement instances.

Ekstrakcja instancji instrukcji fragmentow
kodu pozbawionych synchronizacji
w petlach programowych

Streszczenie

Rozwo¢j architektur wielordzeniowych ~ wymusza poszukiwanie
algorytmdw automatycznego zréwnoleglenia aplikacji. W artykule opisano
zrownoleglenie petli programowych za pomoca ekstrakeji niezaleznych
fragmentow kodu. Ekstrakcja rownoleglosci w petlach programowych
pozbawionych synchronizacji za pomoca podziatlu przestrzeni iteracji
sktada si¢ z dwoch krokéw. Najpierw znajdowane sa instancje instrukcji
bedace poczatkami fragmentéw kodu. Nastgpnie fragmenty kodu
uzupelniane sa o wszystkie instrukcje i generowany jest kod rownolegty.
W artykule przedstawiono korzysci wynikajace z takiego podejscia.
Wyjasniono sposob poszukiwania instancji instrukcji fragmentéw kodu za
pomoca biblioteki Omega rozszerzonej o nowe funkcje upraszczajace
poszukiwanie instrukcji nalezacych do fragmentow kodu. Opis
proponowanego podejscia uzupetniono o zbidr eksperymentéw na petlach
testowych NAS i UTDSP.

Stlowa kluczowe: fragmenty kodu pozbawione synchronizacji,
réwnolegto$¢, instancje instrukceji petli programowych.

1. Introduction

In our recent work [2, 3, 4] we have proposed several
algorithms to extract coarse-grained parallelism represented with
synchronization-free slices consisting of the loop statement
instances by means of the Iteration Space Slicing Framework
(ISSF). The goal of those publications was the formalization and
theoretical representation of techniques extracting
synchronization-free slices by means of ISSF. Experimental
results with NAS benchmarks (the number of slices extracted from
loops as well as program performance: speedup and efficiency of
parallel code) are presented in paper [2].

In the current paper, we focus on the problem of the automatic
extraction of representative loop statement instances of
synchronization-free slices in practice, because this problem is not
trivial and requires a special attention.

In order to implement our algorithms, we have chosen the
publically available Omega Library [11]. Although Omega
provides many useful high-level functions, it lacks some very
important functions to be able to generate specialized relations
envisaged by our algorithms.

In this paper, we show how to extract loop statement instances
of synchronization-free slices by means of both available
functions of the Omega Library and new additional functions
which we have implemented.

2. Background

In this paper, we deal with affine loop nests where:

i) for given loop indices, lower and upper bounds as well as array
subscripts and conditionals are affine functions of surrounding
loop indices and possibly of structure parameters (i.e.,
parameterized loop bounds), and

ii) the loop steps are known positive constants.

A nested loop is called perfectly nested if all its statements are
comprised within the innermost nest. Otherwise, the loop is called
imperfectly nested. An arbitrarily nested loop can be both
perfectly and imperfectly nested.

A statement instance s(/) is a particular execution of a loop
statement s for a given iteration I.

Two statement instances si(/) and s,(J) are dependent if both
access the same memory location and if at least one access is
a write. 51(/) and s,(J) are called the source and destination of
a dependence, respectively, provided that s1(/) is lexicographically
smaller than s,(J) (s1() < s2(J), i.e., s1(/) is always executed
before s5,(J)).

The approach to extract synchronization-free parallelism in
program loops by means of the Iteration Space Slicing Framework
requires an exact representation of loop-carried dependences and
consequently an exact dependence analysis which detects

808

a dependence if and only if it actually exists'. To describe and
implement our algorithms, we choose the dependence analysis
proposed by Pugh and Wonnacott [8] where dependences are
represented by dependence relations whose constraints are
described in the Presburger arithmetic (built of affine equalities
and inequalities, logical and existential operators); the Omega
library is used for computations over such relations [11].
A dependence relation is a tuple relation of the form

{[input list] — [output list] : constraints}, @)

where input list and output list are the lists of variables and/or
expressions used to describe input and output tuples and
constraints is a Presburger formula describing constraints imposed
upon input list and output list.

We use standard operations on relations and sets, such as
intersection (M), union (U), difference (-), domain of relation
(domain(R)), range of relation (range(R)), relation application
(given a relation R and set S, R(S) = {[¢']: Je € S, e>e’eR),
positive transitive closure (given a relation R, R' = {[e] — [e]:
e >e’ eR| Je’ste e’ e R&e’ e’ eR'Y}), transitive
closure (R* = R" U I, where I is the identity relation). These
operations are described in detail in [11].

Iteration Space Slicing [7] takes dependence information as
input to find all statement instances that must be executed to
produce the correct values for the specified array elements.

Definition 1

Given a dependence graph, D, defined by a set of dependence
relations, S, a slice is a weakly connected component of graph D,
i.e., a maximal subgraph of D such that for each pair of vertices in
the subgraph there exists a directed or undirected path.

If there exist two or more slices in D, then taking into account
the above definition, we may conclude that all slices are
synchronization-free, i.e., there is no dependence between them.

Definition 2

An ultimate dependence source(destination) 1is a source
(destination) that is not the destination (source) of another
dependence. Ultimate dependence sources and destinations
represented by relation R can be found by means of the following
calculations: (domain(R) - range(R)) and (range(R) - domain(R)),
respectively.

Definition 3

A source(s) of a slice is an ultimate dependence source(s) that
this slice contains.

Definition 4

A representative loop statement instance of a slice is its
lexicographically minimal source.

Further on in this paper, we refer to representative loop
statement instances as to representatives.

3. Extracting representatives of slices

The approach to extract synchronization-free slices [2] relies on
the transitive closure of an affine dependence relation describing
all dependences in a loop and consists of two steps. First,
representatives of slices are found in such a manner that each slice
is represented with its lexicographically minimal statement

' A non-exact representation of dependences is also possible, but this will cause
losses in some parallelism because of the over-approximation of dependences, while
we aims at extracting maximal synchronization-free parallelism.

PAK vol. 55, nr 10/2009

instance. Next, slices are reconstructed from their representatives
and code scanning these slices is generated.

Given a dependence relation R describing all dependences in a
loop, we can find a set of statement instances, Syps, describing all
ultimate dependence sources of slices as Syps=domain(R) -
range(R). In order to find elements of Sypg that are representatives
of slices, we build a relation, Rygc, that describes all pairs of the
ultimate dependence sources that are transitively connected in
a slice, as follows:

Rysc ={le] > [e']:e,e'e S, ps.e<e',R*(e)NR*(e)}, 2

where R* is the transitive closure of relation R.

The condition (e < e’) in the constraints of relation Rygc
means that e is lexicographically smaller than e’. Such
a condition guarantees that the lexicographically smallest element
from e and e’ will always appear in the input tuple, i.e., the
lexicographically smallest source of a slice (its representative
source) can never appear in the output tuple. The intersection
R*(e)NR*(e) in the constraints of Rysc guarantees that
elements e and e’ are transitively connected, i.e., they are the
sources of the same slice.

Set S, containing representatives of each slice is found as
Srepr: SUDS' range(RUSC)‘

Each element e of set S, is the lexicographically minimal
statement instance of a synchronization-free slice. If e is the
representative of a slice with multiple sources, then the remaining
sources of this slice can be found applying relation (Rysc)* to e,
i.e., (Rysc)*(e). If a slice has the only source, then (Rysc)*(e)=e.
The elements of a slice represented with e can be found applying
relation R* to the set of sources of this slice: Sy;..= R*(Rysc)*(e)).

4. Enlarging the Omega Library

The Omega Library [5, 11] is a set of C++ classes for
manipulating integer tuple relations and sets. Sets and relations in
the Omega library are implemented as a single class, Relation,
marked as being either a set or a relation. A Presburger formula
describing the constraints imposed upon input and output tuples of
a relation is represented as a tree of formula nodes that can have
zero or more children. Children can be either other formula nodes
or “atomic” constraints (single equality, inequality, or stride
constraints). Formula is an abstract class and a plain Formula
node can never be used in a tree. The subclasses of formulas are
F And, F Or, F Not, F Declaration, F Forall, F Exists.
Children can be added to any subclass using the following
member functions that return pointers to the newly created child
node: F And* Formula::add and(), F_Or* Formula::add or(),
F_Exists* Formula::add_exists(), etc.

In order to be able to represent the constraint (R*(e') "R *(e))

of relation Rysc in Omega, we redefine it as an equivalent
constraint of the form:

(Fe":e"eD&e'te&e'#e'&e'e R*(e)&e"e R*(e')) (3)

where D = Domain(R) U Range(R), meaning that two sources of

a slice, e and ¢’, are transitively connected if there exists such an
element, e’’, in the space of dependent statement instances D that
belongs to both R*(e) and R*(e’).

None of the constraints of relation Rygc can be represented in
Omega directly. That is why, to permit for forming the constraints
of relation Ry5c, we implemented the following functions.

1. void S_Add_Constraint (Set S, Relation R, F_And *fex_and,
Variable_ID ex|]) which substitutes the variables of set S for
the variables represented by ex[] and inserts the constraints
represented by S into the constraints of relation R.

809

PAK vol. 55, nr 10/2009

2. void R_Add_Constraint (Relation R1, Relation R2, F _And
*fex_and, Variable_ID ex| |, int flag) which substitutes the
variables of the input or output tuple of relation R1 or the
variables represented by ex[] and inserts the constraints of
relation R/ into the constraints of relation R2.

3.void Add Lexicographic Order (Relation R, F And
*fex and), or void Add Lexicographic_Order (Relation R,
F And *fex_and, Tuple<Variable ID> left, Tuple
<Variable_ID> righf) which inserts the lexicographic order
constraint into the constraints of relation R.

4. void Diff Add Constraint (Relation R, F _And *fex and,
Variable_ID ex| |) which inserts constraint “input_tuple#tuple
& output_tuple#tuple", where “tuple" is defined by ex/ /, into
the constraints of relation R.

Tab. 1. Generation of Rysc
Tab. 1. Obliczanie Rysc

Step Constraints Code
1 R USC={[e] >[e] Relation R_USC(n,n);
X S _Add _Constraint(UDS, R_USC, fand, e);
2 ee’€ UDS .
S_Add_Constraint(UDS, R_USC, fand, ¢’);
3 e<e’ Add_Lexicographic Order(R_USC, fand);
4 Je':e''e D S_Add_Constraint(D, R_USC, fexand, ¢ "),
5 e''re&e'#e Diff Add Constraint(R_USC, fexand, e”’);
R_Add_Constraint(R*, R_USC, fexand, e,
p e'eR*(e)& 1);
e''e R*(e") R _Add Constraint(R*, R_USC, fexand, e ",
0);

The library of the above functions with their detailed
description can be found in the section “Download" at
http://detox.wi.ps.pl/SFS_Project. Table 1 demonstrates how
relation Rysc can be formed in 6 steps by means of the
implemented functions. As we can see, using the implemented
functions, we can generate Rysc by the 8 lines of transparent code.
Having Rysc generated, it is important to simplify it using
Omega's simplify function.

5. Experiments

The presented new functions were used in the tool, ESyS,
implemented by us and permitting for automatic extracting
representative loop statement instances of slices and generating
code scanning slices and elements of each slice. It can be
downloaded from http://detox.wi.ps.pl/SFS_Project. Using ESyS,
we have extracted representative loop statement instances of slices
for the loops presented in Table 2. The graphical representations
of slices available in the loops are presented in Figures 1 — 4. For
loops 1, 2, and 3 the considered iteration space is the set {[ij]:
1<i<5 & 1<j<4}, while for loop 4 it is the set {[i,/]: 1<i;j<6}. The
representatives of slices are marked with the black circles.

:

Fig. 1. The dep. graph for loop 1
Rys. 1. Graf zaleznosci dla petli 1

Fig. 2. The dep. graph for loop 3
Rys. 2. Graf zaleznosci dla petli 3

Fig. 3. The dep. graph for loop 2
Rys. 3. Graf zaleznosci dla petli 2

is2)

K A K A A
7 |
7

N\ VN V7 /i(82)

@@@})é)

Fig. 4. The dep. graph for loop 4
Rys. 4. Graf zaleznosci dla petli 4

N

i(s1)

Tab. 2. Extracting representative loop statement instances of slices
Tab. 2. Ekstrakcja instancji instrukcji fragmentow kodu w petli

Loop 1.
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)

afi][jl=ali](+2];

Loop 2.
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)

ali]ljl=ali](j+2]+ali+2][j];

Rusc= ¢; Rusc= ¢;

Seep=1{[ilj[11 <j<n-2,2&1<i<n}. Seep= {[ij]: 1 <j<n-2,2&
1<i<n-2,2}.

Loop 3.

for (i=1; i<=n; i++) Loop 4.

for (=1; j<=n; j++)

a[i][j]=ali][j+1]+al[i+2][j+1];

for (i=1; i<=n; i++){
s1: b[i][i]=a[i-3][i];
for (j=1; j<=n; j++)
Ryse= {[i,1] — [i%1]: s2: afi][jl=ali][j-1] +blil[il;
3 (alpha: O=i+i’+ 2alpha & }
1<i<iP <2 &1 <n)};
Seep= {[1,1]: 1<i<2 & 2<n}. Rusc= @

Sepr= {82 [i]: 1<i<n,3}.

Applying ESyS, we have studied NAS [10] and UTDSP[12]
benchmarks to recognize what is the number and percentage of
loops exposing multiple synchronization-free slices. We have

810

considered only such loops for which Petit [11] was able to carry
out a dependence analysis. Table 3 presents the number and
percentage of loops for which multiple slices were extracted and
those of loops for which only a single slice was extracted. From
the results presented in Table 3, we may conclude that for most
loops from examined benchmarks, the Iteration Space Slicing
Framework is able to extract coarse-grained parallelism.

Tab. 3. Results of experiments
Tab. 3. Wyniki dla zbioréw petli testowych

The Loops with multipl,
Benchmark | number of 00Ps slices uitiple Loops with a single slice
loops
NAS 80 69 86.25% 11 13.75%
UTDSP 21 16 76.2% 5 23.8%

6. Related work

The results of the paper are within the Iteration Space Slicing
Framework (ISSF) introduced by Pugh and Rosser [7]. That paper
examines one of possible uses of ISSF, namely how to optimize
interprocessor communication. However, Pugh and Rosser do not
show how synchronization-free slices can be extracted. Our
previous papers [3, 4] present approaches within ISSF to extract
synchronization-free slices of the chain and tree topologies that
are described with non-linear forms. Because slices of the chain
and tree topology always have a single source, there is no need for
calculating relation Rygc and the problem of the computation of
representative loop statement instances does not arise. Paper [2] is
also within ISSF. It is devoted to the extraction of
synchronization-free slices described with affine forms, but it does
not present any details concerning the implementation of
a proposed way to expose representative loop statement instances
of slices.

7. Conclusion and future work

We presented a way how to calculate representative loop
statement instances of synchronization-free slices in practice by
means of the enlarged Omega library. Four additional functions
were added to the library to simplify the implementation of
extracting synchronization-free slices. Experiments with NAS and
UTDPS benchmarks were carried out by means of a tool
implementing the presented approach. We extracted
representatives of synchronization-free slices for NAS and

PAK vol. 55, nr 10/2009

UTDPS loops for which Petit was able to carry out a dependence
analysis. In our future work we plan to examine more popular
benchmarks to discover what is the percentage of loops exposing
synchronization-free slices.

8. References

[1] Bastoul C.: Code generation in the polyhedral model is easier than you
think. In PACT'2004, pp. 7-16, Juan-les-Pins, September 2004.

[2] Beletska A., Bielecki W., Siedlecki K., and San Pietro P.: Finding
synchronization-free slices of operations in arbitrarily nested loops. In
ICCSA (2), volume 5073 of Lecture Notes in Computer Science, pp.
871-886. Springer, 2008.

[3] Bielecki W., Beletska A., Palkowski M., and San Pietro P.: Extracting
synchronization-free chains of dependent iterations in non-uniform
loops. In ACS '07: Proceedings of International Conference on
Advanced Computer Systems, 2007.

[4] Bielecki W., Beletska A., Palkowski M., and San Pietro P.: Finding
synchronization-free parallelism represented with trees of dependent
operations. In ICA3PP, volume 5022 of LNCS, pp.185-195. Springer,
2008.

[5] Kelly W., Maslov V., Pugh W., Rosser E., Shpeisman T., and
Wonnacott D.: The omega library interface guide. Technical report,
USA, 1995.

[6] Lim A. W., Cheong G. I., Lam M. S.: An affine partitioning algorithm
to maximize parallelism and minimize communication. In 1CS'99,
pp-228-237. ACM Press, 1999.

[7] Pugh W. and Rosser E.: Iteration space slicing and its application to
communication optimization. In International Conference on Super-
computing, pp. 221-228, 1997.

[8] Pugh W. and Wonnacott D.: An exact method for analysis of value-
based array data dependences. In In Sixth Annual Workshop on
Programming Languages and Compilers for Parallel Computing.
Springer-Verlag, 1993.

[9] Vasilache N., Bastoul C., Cohen A..: Polyhedral code generation in
the real world. In ETAPS CC'06), LNCS 3923, pp 185-201, Vienna,
Austria, March 2006. Springer-Verlag.

[10]NAS benchmark suite. http://www.nas.nasa.gov.

[11]The Omega project. http://www.cs.umd.edu/projects/omega.

[12]JUTDSP benchmark suite. http://eecg.toronto.edu/~corinna/DSP/
infrastructure/UTDSP.html.

Artykul recenzowany

INFORMACJE

Zapraszamy do publikacji artykutéw promocyjnych
w miesieczniku naukowo-technicznym PAK

Redakcja czasopisma POMIARY AUTOMATYKA KONTROLA
44-100 Gliwice, ul. Akademicka 10, pok. 30b,
tel./fax: 032 237 19 45, e-mail: wydawnictwo@pak.info.pl

