803

PAK vol. 55, nr 10/2009

Michat GOZDALIK
WEST POMERANIAN UNIVERSITY OF TECHNOLOGY

An automatic parallel OpenMP code generation

Mgr inz. Michal GOZDALIK

A PhD student at the West Pomeranian University of
Technology, Szczecin. Currently involved in creating
a tool for the generation of the parallel code in C, with
the content of OpenMP standard, taking most possible
advantage of multi-processor machines.

e-mail: mgozdalik@wi.ps.pl

Abstract

This paper presents a problem of generating an efficient parallel code from
an existing sequential code in an automatic way. The main part of this
paper is dedicated to the description of the automatic parallel code
generation process. Not only an idea of building an automatic code
generation tool is provided, but also a theoretical basis which allows us to
understand the optimization problem of parallel code. In the theoretical
part of the article the solution has been proposed for measuring the quality
of code executed by determining the parameters of speedup and efficiency.
Also information about known problems associated with parallel
processing and speed of code were provided. Discusses, inter alia, impact
on the effectiveness and performance of the barrier synchronization. Also
a problem with scheduling in the performance of the CPU load of parallel
threads is presented. An example of code generated by a tool under
development is explained. Some results of experiments are provided to
present code quality measurements. The results come from the first
iteration of the program, which does not attempt to optimize the generated
code in terms of improved locality. Iteration does not include the attempt
to generate code that would contain less of a barrier synchronization.
These features are under the implementation phase.

Keywords: OpenMP, iterative code generation, shared memory
programming.

Automatyczna generacja kodu rownolegtego
w standardzie OpenMP

Streszczenie

W artykule przedstawiony zostal problem dotyczacy stworzenia
automatycznego narzgdzia generujacego kod w standardzie OpenMP,
ktory bylby efektywnie wykonywany pod danym $rodowiskiem
uruchomieniowym. Artykut przedstawia podstawy teoretyczne zwigzane
ze sposobem pomiaru jakosci wygenerowanego kodu, jak réwniez
przedstawia model narzgdzia wykonujacego automatyczng generacjg
wydajnego kodu w standardzie OpenMP. W czgsci teoretycznej
zaproponowane zostalo rozwigzanie problemu pomiaru jakosci
wykonywanego kodu za pomoca okreslenia parametrow przyspieszenia
i efektywnosci. Opisany zostal sposob, w jaki mozna uzyska¢ doktadne
wartosci tych parametrow podczas wykonywania aplikacji rownolegtych.
Zawarto rowniez informacje na temat znanych probleméw zwigzanych
z przetwarzaniem réwnoleglym i szybkoscia dziatania kodu. Omoéwiono
migdzy innymi wplyw synchronizacji barierowej na efektywnos¢
wykonywanych programéw. Przedstawiono takze problem réwnomiernego
obciazenia procesorow podczas wykonywania watkow programu
réwnolegtego. Oprocz architektury narzedzia, zaprezentowane zostaly
wyniki badan uzyskane z czg$ciowo zaimplementowanej juz aplikacji.
Wyniki pochodza z pierwszej iteracji dzialania programu, ktora nie
podejmuje proby optymalizacji wygenerowanego kodu pod wzgledem
zwigkszenia lokalno$ci. Iteracja ta nie zawiera rowniez proby
wygenerowania kodu, ktéry zawieral by mniej synchronizacji
barierowych. Powyzsze funkcjonalnosci sa w fazie implementacji.

Stowa kluczowe: OpenMP, programowanie réwnolegte, automatyczna
generacja kodu.

1. Introduction

Through many years computer’s architecture evolves. Faster
processors provide ability to execute more instructions per second.
The need for fast CPUs were caused by graphics programs and by
software dedicated for scientific purposes. Unfortunately, further
evolution of one-core processors is bounded by technical
problems, so multi-core processors became popular in last years.
To use all abilities of new multi-core processors, new tools are
needed. Programs which were working under a one-core processor
can not use more cores to enhance performance. Such programs
must be rewritten. It is not as simple as might be thought, so
automatic tools are needed for generating parallel code from
sequential one. It will take too much time to rewrite all code
libraries which were written in a sequential way.

Nowadays all large companies doing researches about parallel
processing, but not many automatic code generators are provided
and those which exist are under a construction phase. Two of them
are interesting to be mentioned.

Fujitsu Parallelnavi Workbench

It is a workbench created for using in WAN networks which
allows programmers to develop projects in the OpenMP standard
in an easy way. The most interesting subsystem in this workbench
is an automatic code generator module. It provides ability to
generate, analyze, and correct code in the OpenMP standard.
Tuning the execution time function bases on program profiling.
This module is under a development stage and as in the VTune
performance analyzer, the code generator is in the beginning phase
of functionality. More piece of information about this benchmark
is provided in paper [4].

iPat/OMP

It is also an automatic tool designed for code generation in the
C language under the OpenMP 3.0 standard. The capabilities of
this program are quite broad. One of four modules can analyze
parallelism to provide information for the code generator how
parallel directives should be placed inside code. Having such type
of information, another module generates OpenMP directives
which are placed inside a source code. The other two modules try
to enhance performance. A program restructuring module was
design to enhance parallelism and execution effectiveness. To
provide measurements, OpenMP standard functions were used and
the execution time analysis module is in charge to provide
information about changing code to be more efficient. More piece
of information about this tool is provided in publication [10].

The above solutions provide some techniques for optimizing the
time execution of generated code. In the other sections of this
paper it is stated that an optimization process is more efficient
when it is done under a specific execution environment. For that
reason, a parallel code generator should optimize a generated code
under a specific machine under which code will be executed. The
execution of such a program on other machine will not be as
optimal as under the machine where optimization process took
place. For that reason changing an execution environment will
cause running an optimization process once again if higher
efficiency is needed.

2. Parallel code generator

The automation of a parallel code generating process is not as
simple as might be seen in the first time. The problem is to

804

generate an efficient code which will use all of available machine
resources in the best possible way. It requires to generate code
which will execute as fast as possible under a provided machine.
There is no easy way to achieve such a result and in some cases it
is impossible. It is reasonably obvious when we understand the
fact that computer’s architecture differ from each other. Different
processors, memories and technology solutions for a computing
machines ensure variety which provide to one unsolved problem -
how to generate a parallel code which will execute fast in all kinds
of computers. As a result, a described code generator will generate
an efficient code dedicated for a specific machine. If there will be
a need for generating parallel code under other computer
architecture machine, the code generation process will be done
once again under that specific machine. Such a method will
guarantee that the code is optimal under one specific machine and
probably will not be efficient on other architecture.

Talking about the code efficiency and the optimization of code,
we need to keep under our consideration the fact that it should
exist a methodology which can measure the code efficiency. In the
next part of this paper, more piece of information about
measurements methods of code quality is described.

3. Parameters and code quality

There are two main measurements in a parallel processing
paradigm which can easily supply information about the code
quality. These parameters are crucial for a program which will
allow us to automatically generate code in the OpenMP standard,
because of information about the code quality. For better
understanding the problem of generating efficient code in
OpenMP, it is highly recommended to know how to measure code
quality. That is why this piece of information is highly valuable
during a parallel code generation process. In the rest of this section
more piece of information about speedup and efficiency
parameters is provided.

The speedup is a measure which can tell how faster the parallel
code is executed than the same code is executed on a single
processor machine. The most precise way to measure speedup is
to count processor’s ticks. Not only for that reason speedup is not
measured in seconds, but also communication time is a problem. It
is impossible to measure execution time in seconds because these
measurements will be inadequate according to a problem with
communication time. It is more reasonable to count time in ticks
which are provided directly from a processor and counts only the
instructions which were executed by a program. As a result, no
communication time is included into measurements, so the result
is more precise.

To count speedup, the formula provided below is commonly
used.

T (n,1)

1
T(n,p) M

S(n,p) =

In the formula above, T is the time counted in processor’s clock
ticks, n is the portion of code, and p is the number of processors
used for computation. S is commonly reserved as a variable which
describes speedup. The case when speedup is equal to the number
of processors used in a program execution is commonly named
full speedup. When speedup is higher than the number of
processors used for a program execution, the term hipper speedup
is used.

Speedup is not the only parameter which can provide a piece of
information about the quality of parallel code. The second one is
efficiency. This measure is strictly connected with speedup. In the
matter of fact, it is speedup divided by the number of processors
used for program execution. The efficiency formula (2) is
provided:

5,(n.p) =P @
P

PAK vol. 55, nr 10/2009

where 04(n, p) is the code efficiency, where the size is n,
executed on p processors. S (np) is the speedup counted from
axiom (1). As we can see this parameter can provide information
about what was the quality of generated code according to the
time execution. Such information is crucial when the code
generation process needs to produce efficient code. Having
information about code efficiency, the code generator should be
able to reduce synchronization and communication costs, and
balance load.

4. The Amdahl’s law

Not all of the parts of a program can be executed in parallel. For
example, all input and output instructions, such as printing
something on screen or providing data from a keyboard, cannot be
executed in parallel. The presence of such instructions is the
reason why in some cases it is impossible to achieve full speedup.
For that reason it is essential to know in what way such
instructions can affect speedup. Assuming that we can divide
code for two parts, the part in which we can execute instructions
in parallel and the part where instructions have to be executed
in a sequence, we can predict that the execution time will be
the sum of these two parts. The equation (3) describes this
situation:

A -x)*T(n,1)
p

T(n,p)=x*T(n,l)+ 3)

where x-T (n,1) is the execution time of x instructions which can
not be execute in parallel. The x variable is normalized to <0; 1 >.
The [(1 —x) * T(n, 1)] / p is the execution time needed to execute
the p instructions which can be executed in parallel.

Having such a formula it is simple to deduce some rules
according to speedup. Let us divide both sides of formula (3) by
T(n1).

T(n,p) < x*T(n,l)

+(1 - x)*T(n,1)

- @)
T (n,1) T (n,1) T(n1)*p
Next, after doing some reductions, we achieve the equation (5):
Ir(n,p) ., 1-x)
T (n.1) I4
Using axiom (1), we stipulate
S(n,p) = ! 6
s P) = 1 - x ()
X +
p

This formula is known as Amdahl’s law. This law is interesting
because it is simple to predict the speedup when the number of
processors used for a program execution grows to the infinity.

. 1
plin,ws(nap) b ; (7)

It is easy to make the deduction that if the processor number
grows twice, speedup will not grow twice. This is because of
synchronization and communication costs.

In a parallel execution process, when more than one thread
executes loop, and loop’s iterations are divided among a thread
pool, it is crucial for the program correctness to synchronize all
threads from the pool. When one of threads executes instructions
faster than the other, the fastest thread must wait for the other
threads to continue another part of instructions execution, because
the program must be deterministic. So when a thread waits, it
looses processor’s time and does not execute any code. That

805

PAK vol. 55, nr 10/2009

affects speedup. Moreover during a wait period, the thread is in
a sleep mode and needs to communicate with other threads to
know if they have finished their execution. More threads means
more synchronization and communication costs and lower
efficiency. For that reason, it is highly recommended that all
processors should have equal load balance. It means that all
available processors should execute approximately the same
amount of instructions to reduce the synchronization and
communication time and to increase speedup and efficiency.

5. Parallel code generator architecture

A parallel code generator will be a modular program which will
automatically generate a source code in the OpenMP 3.0 standard
ready to be compile via any compiler which is dedicated to the
OpenMP 3.0 standard. A modular architecture allows us to
connect the code generator we are working on with any compiler
suitable for compiling a source code in the OpenMP 3.0 standard.
Moreover many external programs can be plugged in. For
example, there is possibile to use any program which can produce
a pseudo code with no data dependencies. Nevertheless, any
program such as the Intel VTune Thread Profiler can be joined to
measure quality parameters of a generated parallel code. A plugin
architecture provides a flexible mechanism for configuring the
code generator program for any suitable machine under which
a generated program will be executed.

Intentionally, the generator tool will generate code which will
be optimal under a specific runtime environment on a specific
machine. What is the meaning of an optimal code or the quality of
code is explained in paragraph 3.1 of this paper. In Figure 1, the
structure of the code generation program is shown .

Loop in Petit
format

Input
Esys parser

P

Pseudo code
parser

(> Code

Generator

Optimization |)]

Algorith

C) Profiler

parser

Fig. 1. A modular structure of an automatic parallel code generation program
Rys. 1. Modutowa struktura generatora kodu rownolegtego

In the first stage a loop must be provided in the Petit format.
More piece of information about Petit syntax can be found in the
Petit documentation website mentioned in paper [3], where more
information about the Presburger’s arithmetic is also included.
Broadly speaking, Petit and the Omega calculator uses the
Presburger’s arithmetic to carry out dependence analyze. Only
code with none of them can be executed in parallel.

Secondly, pseudo code in the Petit format is taken by the Esys
program which was written by Marek Patkowski [8]. This
program provides a pseudo code which is generated from the
Omega calculator tool and contains synchronization-free code
slices which can be executed in parallel. Moreover, an input file
with a loop written in the Petit format is parsed using an Input
Parser. The Input Parser is a module which parses an input loop to
create a list with lines of code, which are in the loop body.

Nevertheless, the Input Parser creates all declared variables
objects. Each declared variable is keep as an object with all pieces
of information required to produce a syntax correct code in the C
language.

When all variables objects are created and the input loop is
parsed correctly, the Pseudo Code Parser module starts parsing the
pseudo code obtained from the Esys program. Synchronization-
free slices are parsed into code lines of a specific blocks of code
which are required to generate a correct piece of code in the C
language. In this phase all loops iterators are updated to gain data
from vectors, and a pseudo code became the code in the C
language. To parse a pseudo code, regular expressions were used
because of a specific character of pseudo code generated by the
Esys parser. The last step of this phase is an error correction
process. The Esys program uses the Omega calculator’s code
generator, which produces a pseudo code with several errors, such
as wrong vector indexing, doubling variables names and more,
which are provided in the Petit and Omega documentation [2, 3].
Moreover, in this phase a pseudo code is corrected to be more user
friendly and understandably during being studied by a programmer.

Having all pieces of information from the Pseudo Code Parser
and the Input Parser, the Code Generator module can produce
a piece of code written in the C language. All variables objects
from the Input Parser are translated into the variable declaration
section of C code. Needed libraries are also included into C code
using the header mechanism. The obligatory main function is
created and filled with synchronization-free code. The last step in
this module is the creation of OpenMP 3.0 compatible parallel
source code. After this step, a program is ready for a compilation
process. For this moment only simple parallel code is generated
with no optimization algorithm which is under construction. None
of the optimization algorithm part is implemented because the
creation of this algorithm is in a construction phase.

This algorithm will work iteratively to produce parallel code
which is suboptimal for a specific machine. The stop condition of
this algorithm is one of the following

e Provided number of iterations exceeded,

o The next iteration generates code which is not as optimal as code
generated in previous iteration, according to the measurements
described in section 3 of this paper,

o Provided quality of source code is being achieved.

For this moment, the parallel code generator can produce code as
the first step of the algorithm. That means no optimization
provided. Also measurements are not taken from the code parser
but from directives provided into the OpenMP 3.0 standard. In
chapter 4, an example is provided which explains the process of
automated code generation.

6. Example

In this chapter, an example is provided to show how the code
generator works. The code provided below is the input loop for the
generator. This loop provides calculations allowing us to filter an
image. As a result, the image became more fuzzy. Only the code
of the crucial program’s loop is provided below.

for (j = 0; §J < ile; 7 =3 + 1)
{

for (k 1; k < ile; k =k + 1)
mac[j] [k]l=(mac[]] [k-1]+mac[]j][k])/2;

}

It is evident that all types of dependencies occur in our example.
Figure 2 shows the dependencies in the above code.

806

Y

=

i

Fig. 2. The iteration analysis
Rys. 2. Analiza iteracji

Keeping Figure 2 under consideration, each iteration iterated by
variable j can be executed in parallel. This is quite simple
example but generally we can not always see loop dependencies
from such a chart and not always it is so easy to deduce a solution
how code can be executed in parallel. The Esys program generates
pseudo code representing synchronization-free slices of code
which can be executed in parallel. Such a code is presented below.

The number of dependence relations: 1.
1. {[i,3,v] => [i’,3",v'] i’ =1 && J’ = 143
& v =5 && v =5 && 1 <= j <= 99
s& 1 <= 1 <= 100 }
Sources of Slices: 1
{[i,3,v] J =1 && v =5 && 1 <=1 <= 100 }
R_UCS
{[ille] -> [illj’IvI] FALSE }
Outer loops scanning sources of synchronization-
free slices:
for(tl = 1; tl <= 100; tl++) {
s1(tl,1,5);
}
Loops scanning elements of each slice in
lexicographical order:
for(tl = 1; tl1 <= 100; tl++) {
sl(tl,1,5);
if (t1 >= 1 && tl <= 100) {
for(t2 = 2; t2 <= 100; t2++) {
s1(tl,t2,5);
}
}

The pseudo code contains information about dependance
analysis results. They are delivered in two ways. The first of them
is a Presburger’s arithmetic representation which is rather not
useful during the code generation process. The most useful
representation is a simple pseudo code. After the parsing process
of this pseudo code and after the code generation phase, the
generator produces full code in the C language, which is
compatible with the OpenMP 3.0 standard. The most important
part of the code is the loop. The generated loop code is provided
below.

#pragma omp parallel for private(tl,t2)
for(tl = 0; tl <= 100; tl++) {
mac[tl][1] = mac([tl][1-1]4+mac[tl][1];
if (£l >= 1 && tl <= 100) {
for(t2 = 2; t2 <= 100; t2++) {
mac([tl] [t2] = mac[tl][t2-1]
+ mac[tl][t2];

Because the rest modules of the generator are not yet
implemented, compilation and a testing process was done
manually. For that reason the GCC 4.2.2 compiler was used. An
input square matrix which represents an image was generated
randomly. With every step of the test, a dimension of the matrix
was enlarged. One code execution was counted as one step. Each
of all experiments was repeated five times and the approximate

PAK vol. 55, nr 10/2009

time was taken as the result. As it was mentioned before, the time
was represented as processor’s clock ticks. Experiments were
executed on the Intel Xeon Quad Core Processor with 8 MB L2
cache and 1066 MHz FSB. Each core clock was 1,6 GHz and the
Intel Virtualization Technology was used. There were exactly
eight processors which executed the parallel code. Figure 3 shows
results gathered from experiments.

Image fittering speedup

—

19

05

0 T T T T T T T T T
1400 1800 2200 2600 3000 3400 3800 4200 4600 5000

Metrix capacity

Fig.3. Speedup of an image filtering
Rys. 3. Przyspieszenie filtrowania obrazu.

The maximum speedup during experiments was 2,6 for the
image with 5000x5000 pixels. Speedup is defined by
communication costs and additional cost spent on the thread
creation process and the thread scheduling process. An
optimization algorithm, which we are working on, must keep
under consideration the reduction of these costs. There is also the
need for the enhancement in the load balancing process to achieve
better speedup.

7. References

[1] Van Der Pas R., Chapman B., Jost G.: Using OpenMP. The MIT
Press, 2007.

[2] Omega Project Documentation. Omega project website: http://
www.cs.umd.edu/projects/omega/. Valid at June 25, 2009.

[3] Petit Documentation. http://github.com/davewathaverford/the-omega-
project/tree/2ff0a6563ed1c2b2eee8cIbt82{3657a8e6d6be2/petit/doc.
June 25, 2009. Petit tool project website available June 25, 2009.

[4] Fujitsu Systems Europe Ltd., Url valid at June 25, 2009, http://
www.compunity.org/compilers/fujitsu/Workbench.pdf. Parallel Navi
Workbench: an OpenMP Development Enviroment for a Wide-Area
Network,.

[5] Abd-El-Barr M., El-Rewini H.: Advanced computer architecture and
parallel processing. Wiley Interscience, 2005.

[6] OpenMP Architecture Review Board, OpenMP C and C++ Application
Program Interface, 2.0 edition, March 2002, Url valid at June 25, 2009
http://www.openmp.org/blog/specifications/cspec20.pdf..

[7] OpenMP Architecture Review Board, OpenMP Application Program
Interface Draft 3.0, 3.0 edition, Oct. 2007. Url valid at June 25, 2009
http://www.openmp.org/drupal/mp-documents/cspec30_draft.pdf.

[8] Patkowski M.: http://detox.wi.ps.pl/SFS_Project. Valid at June 25,
2009. ESyS project website.

[9] Kohr D., Chandra R., Dagum L.: Parallel programming in OpenMP.
Morgan Kaufmann Publishers, 2001.

[10]Univ. of Electro-Communications, Japan. Interactive Parallelizing
Assistance Tool for OpenMP:iPat/OMP. Url valid at June 25, 2009
http://www.compunity.org/events/ewomp03/omptalks/Monday/Sessio
n2/T08p.pdf.

[11]Addison Wesley. An introduction to parallel computing . Addison
Wesley, 2003.

Artykut recenzowany

