799

PAK vol. 55, nr 10/2009

Witodzimierz BIELECKI, Tomasz KLIMEK, Maciej PIETRASIK
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY, WYDZIAt INFORMATYKI

An experimental study on recognizing classes

of dependence relations

Prof. dr hab. inz. Wlodzimierz BIELECKI

Prof. dr hab. inz. Wiodzimierz Bielecki is head of the
Software Technology Department of the West
Pomeranian University of Technology, Szczecin. His
research interest includes parallel and distributed
computing, optimizing compilers, extracting both fine-
and coarse grained parallelism available in program
loops.

e-mail: whielecki@wi.zut.edu.pl

Mgr inz. Maciej PIETRASIK

Maciej Pietrasik is Phd student of the Software
Technology Departament of the West Pomeranian
University of Technology, Szczecin. His research
interest includes transitive closure dependence
relations problem and extracting fine- coarse grained
parallelism available in program loops.

e-mail: maciej.pietrasik@gmail.com

Mgr inz. Tomasz KLIMEK

Tomasz Klimek is Phd student of the Software
Technology Departament of the West Pomeranian
University of Technology, Szczecin. His research
interest includes parallel and distributed computing,
transitive closure algorithms and optimizing compilers.

e-mail: thlimek@wi.zut.edu.pl

Abstract

A classification of dependence relations representing exact dependences in
program loops is presented. The class of a relation causes the choice of
techniques for program loop parallelization. Techniques to recognize the
class of a relation are presented. The implementation of these techniques
by means of the Omega library is discussed. Results of an experimental
study aimed at recognizing classes of dependence relations extracted for
popular benchmarks (Livermore Loops, NAS, and UTDSP) are outlined.

Keywords: affine loops, dependence relations, program transformation,
parallelization.

Techniki identyfikacji klas relacji zaleznosci
w petlach programowych

Streszczenie

W artykule dokonano podziatu relacji zaleznosci wystgpujacych w petlach
programowych. Na podstawie przeprowadzonych obserwacji wyodrgbniono
szes¢ podstawowych klas takich relacji. Trafne rozpoznanie danej klasy
relacji opisujacej zaleznosci, determinuje dobor odpowiedniej techniki
transformacji petli programowej i tym samym pozwala na uzyskanie
znacznie wigkszego jej stopnia rownoleglo$ci w pordwnaniu z metodami
bazujacymi na rozwiazaniach przyblizonych. Rozwiazania takie, zawieraja
zdecydowanie wigksza liczbg zaleznos$ci, anizeli ich faktyczna liczba
wystapien. W celu utatwienia procesu identyfikacji poszczegdlnych klas
relacji zaleznosci, przedstawiono szereg formalnych metod ich rozpoznania
wykorzystujacych szeroki wachlarz mechanizméw zawartych w bibliotece
Omega. Na potrzeby przeprowadzonych badan zaimplementowano
narzgdzie, w ramach ktérego przeanalizowano zestawy petli trzech
popularnych benchmarkéw : Livermoore, NAS i UTDSP. Uzyskane wyniki
pozwolily wyciagna¢ wnioski odno$nie procentowego udziatu relacji
zaleznosci w zaproponowanych przez autoréw klasach.

Stowa kluczowe: petle afiniczne, relacja zaleznosci, transformacje petli,
przetwarzanie rownolegte.

1. Introduction

Dependence relations permit for an exact representation of
dependences in program loops that allows for extracting more

fine- and coarse-grained parallelism in program loops in
comparison with techniques based on over-approximations of
dependences. Dependence over-approximations describe more
dependences than those actually existing in program loops. This
reduces extracted parallelism. Dependence relations can belong to
different classes, and it is very important to know what is the class
of a particular relation because this affects the choice of
techniques being used to extract parallelism available in program
loops, e.g. a way of calculating the transitive closure of a relation.
In this paper, we present classes of dependence relations,
techniques to recognize the class of a given relation, and results of
an experimental study for the three popular benchmarks:
Livermore Loops, NAS, and UTDSP. The goal of experiments
was verifying suggested techniques for recognizing classes of
dependence relations and collecting data answering the question
what is the number and percentage of relations belonging to
presented classes of relations.

2. Dependence relations

Integer tuple relations can concisely summarize many types of
information gathered from an analysis of scientific codes.
For example, they can be used to precisely describe which
iterations of a statement are data dependent of which other
iterations. The following is an example of a relation from
1-tuples to 2-tuples :

{l1>[,/:1<i=i'=j'<n}
The relation above describes data dependences among instances of

statement 1 and instances of statement 2 for the loop presented
below:

do2i=1,n
sl: a(i,1)=0
do2j=1,i
s2: b(i,j)=b(i,j)+a(i,j)

We use the term dependence relation rather than tuple relation
when they describe data dependences. There is a data dependence
from statement/instance of statement s, to statement/instance of
statement s, (statement/instance of statement s, depends on
statement/instance of statement s,) if and only if:

2.1 both statements/instances of statement(s) access the same
memory location and at least one of them stores into it,

2.2 there is a feasible run-time execution path from s, to s,.

800

Each pair of dependent statement/instances is called
a dependence. Any ordering-based optimization that does not
violate dependences of a program does not change the output of
the program. Dependences represent two different kinds of
constraints on program transformations. First there are constraints
designed to ensure that data is produced and consumed in the
correct order. The dependences that arise from these constraints
are called data dependences. The other constraint that gives rise to
dependences is a control flow. A dependence that arises due to
a control flow is called a control dependence. Although both data
and control dependences must be considered when correctly
parallelizing a program, we will concentrate exclusively on data
dependences. There are three ways that a dependence can arise in
a program [5]:

True dependence — the first statement/instance of statement
stores into a location that is later read by the second
statement/instance of statement. The statements below expose
such a dependence.

S1 X =...
S2 w.=X

Antidependence — the first statement/instance of statement reads
from a location into which the second statement/instance of
statement later stores. Such a dependence takes place for the
following statements.

S ..=X
S2 X =...

Output dependence — both statements/instance of statements
write into the same location. The statements below originate such
a dependence.

S1 X =..
S2 X =..

Dependences can be represented by dependence relations which
are much more powerful abstraction than the traditional
dependence distance or direction abstractions. The loop above has
dependence distance (0), but that does not tell us that only the last
iteration of loop j presented above is involved in the dependence.
This type of additional information is crucial for determining the
legality of applying advanced loop transformations. For that
reason we divided the dependence relations into six main groups
described in the next subsection.

3. Classes of dependence relations

Below, we consider the classes of parameterized affine integer
tuple relations and present techniques permitting us to recognize
them. These techniques can be implemented by means of many
well-known public available tools, but we chose the functionality
available in the Omega project software. Below we present classes
of dependence relations being considered in this paper.

3.1 d-form relations [4] — a relation R is said to be in d-form if
it can be written as

{lil’iz""’im]_)[fl’jz"'7jm]: vp’lspsn/" }(1)

Ja, st.(L,<j,—i,<U, Aj,—i,=M,a,)

where L, and U, are constants and M, is an integer. If L, is —oo
or U, is +oo, the corresponding constraints are not included
in the above equation. As we can see, if a d-form relation
is described on an unbounded region, it has only constraints on
the difference between the corresponding elements of the input

PAK vol. 55, nr 10/2009

and output relation tuples. Otherwise we should impose
additional constraints on the domain and range of a relation.
The following is the example of a relation described on the
unbounded region

R={[i, j/1->[i, j'1: '=i=1 A j—j=2} 2)

and below there is the example of a relation described on the
bounded region:

R={[i,/]-l,]]: =21 A j—j=2 Al<i<n Al<j<m-2} (3)

To check whether relation R belong to the d-form class,
we create a relation r = diffToRel(difference(R)), where

difference(R) is the function from the Omega library which returns
a set of dependence distance vectors of relation R. When we
impose constraints on the domain and range of a relation r as
follows r=(r\domain(R))/range(R), we can check the

following condition:
r-R=R-r=0 (€]

If it is true, then we can conclude that relation R satisfies the
necessary condition to be a d-form relation. This condition means
that if relation » constructed from a set of dependence distance
vectors of relation R is equivalent to R, then relation R belong to
the d-form class.

3.2 Uniform relations — a relation R is said to be uniform if it
just like d-form relations has constraints on the difference between
the corresponding elements of the input and output tuples and
these differences are always constants, i.e,

Wivsiysoosin] Lo ses) s VP 1S DS, j o —i =M} (5)

For a relation being described on a bounded region, we can add
additional constraints on the domain and range of the relation.
Below is an example of the uniform relation

R={{i,j]1>[,)]: i =2 A= =3A1<i<n-2A1<j<m-3} (6)

To check whether relation R has a uniform distance vector, we
create two sets: min = minimize (difference(R)) and max =
maximize (difference (R)), where minimize and maximize are the
functions of the Omega library which calculate the minimal and
maximal dependence distance vector from the given set
difference(R). If the following condition is true:

min— max = max—min =&, 7

this means that dependence distance vector difference(R) is
constant and R is a uniform relation.

3.3 Relations describing dependence chains only [1][2] —
a relation R describes graphs of the chain topology only if it
satisfies the following condition.

For each s/d=source/destination:
s e domain(R), d e range (R), there exists the exactly one
destination/source d/s. For this purpose, we have to check whether
there exist such s; and s; that s; # 5; and R(s;)=R(s;) as well as such
d; and dj that d, # d;, and R''(d))=R"'(d)).

Below there is the example of a relation describing dependence
chains only

R={[i,j/1oli+1,J']: n+2j'=4j A1<ini+2)'<4j A1< ' A3)'<45} (8)

PAK vol. 55, nr 10/2009

Relation R describes a graph of the chain topology only if it
satisfies the following condition:

(f eR)AR = (=If o =R)A—R = @ ©)

where [f is the lexicographically forward relation such that
Vx—> yeR, 0=<y— x. The first part of the condition means
that there does not exist such r; and r;, r; # r;, rerange(R) that
R'l(rl-)=R'1(Rj), while the second part of the condition means that
there does not exist such d; and d;, d; # d;, dedomain(R) that
R(d)=R(d)).

3.4 Relations with coupled index variables - a relation R has
coupled index variables if one or more input or output tuple
elements are represented by an expression including two or more
index variables. An example of such a relation is below

R={{l,i,k]>[l'i-k-LKk]:1<I<I'<loop ni<n A (10)
0<Kk' A2+k+k'<i ANOLK}

To check whether relation R has coupled index variables we:

(i) create a relations R;, 1<i<m, in the following way

R ={[s;]>[1]:3(s;,t; st. 1< j#=i<m A
’ (11)

[$),8,5,...,8,] : constraints from R A

[#,t,,...,2,] : constraints from R) }

where m is the number of index variables of the input and output
tuples of R and all these relations consist only of the i-th index
variable. The rest of index variables we make to be existentially
quantified.

(ii) create relation R., as the composition of relations R;, 1<i<m,
as follows:

<=

R ={[5,,85e0s8,,] > [t1st35000t,,] :

0

(12)

constraints on s, from R, A

constraints on ¢, from R, }

(iii) if R#R then we can conclude that relation R has coupled
index variables. Let us consider the following example.

(i) For the above relation R, we create the following three
relations

R ={[[1->[I'):3(i,k,k': 1<I<]'Sloop Nni<nA
0<K'A2+k+k'<iAn0<k)} =
{[1=>[']:1<l<!'Sloop A3<n}

R ={[{]->["): LIk k' : i"=i—k—-IA1<I<]'Sloop Ni<n A
0<K' A2+k+K<i AOLk)} =
{[[1-[i']:1<i'<i<n A2<loop}

Ry ={lk]—=>[Kk']:3(L1I'i:1<]<]'Sloop Ni<n A
0<Kk'A24k+k'Sin0Lk)} =
{[k]1>[k'"):0<k AOLKk'A2ZI00p A3+k+k'Sn }

(i) Next we create relation R, as the composition of relations R,
Rz, and R3.

801

R, ={[Li,k]>[I'i"k']:1<I<I'<loop A3<n A

constraints from R,

1<i'<i<n A2<loop A

constraints from R,
0<kAOLk'A2Zloop AN3+k+k'Sn} =
constraints from R
{[Li,kl> [l i'" k'] :1<I<]'Sloop A1<i'<i<n A
0Kk A3+k+k'Sn A0Lk}

R,-R= U, i.e. a relation R has coupled index variables.

3.5 Relations with non-coupled index variables - a relation R
has non-coupled index variables if each its tuple element is
represented by an expression including one index variable. For
this type of relations we can apply the same approach as described
above for relations with coupled index variables, and if the
following condition is true:

(i) R~=R, then we can conclude that relation R has not coupled
index variables, i.e,

R={[i,j1>[i'"2j]:1<i<i'<n A j21A2j<m} (13)

3.6 Relations with different numbers of index variables of
input and output relation tuples

The example of such a relation is as follows:
R={[i]>[/,j]:1<i<i’<n Al<j<m} (14)

To check whether relation R has different numbers of index
variables of input and output relation tuples, we use the functions
R.n_inp() and R.n_out() from the Omega library which returns the
numbers of input and output index variables. If the following
condition is true

Ran_inp() # Ron_out (),

this means that relation R has the different numbers of index
variables of the input and output relation tuples.

4. Experiments

The techniques recognizing classes of dependence relations
presented in Section 2.1 were implemented in a tool based on the
Omega library [3]. Using this tool, we have carried out
experiments with Livermore [7], UTDSP [9], and NAS [8]
benchmarks. Petit [6] was used to extract dependence relations for
these benchmarks. Results of experiments are presented in Table
1. For each suite under experiments (Livermore loops, UTDSP,
NAS), the most relations belong to d-forms. Numerous relations
are uniform. Relations with the different numbers of index
variables of input and output tuples often occur in benchmarks
under experiments. Relations describing dependence chains were
discovered for NAS benchmarks only (no such relations in the
Livermore and UTDSP suites). There are less than 1% relations
with coupled index variables.

Tab. 1. Wyniki badan

Tab. 1. Results of experiments
Benchmark All relations d-form % d-form
1. 2. 3.
Livemoore 1148 767 66,81 %
UTDSP 700 301 43 %
NAS 52098 31417 60,35 %

802

: £ B -
£ 5] = <
= = =] s .S
<= S 22 =}
E g g ° g °38 z 8
g £ g a8 == g
= S = 5 & =8 S v
< = =t B = z > E=e
5] £ = = g v % = =
o) =) ° g 5 =I5 ()
=) X 7 = S ~ 3
= S = g o 2
& z == S
“ R & g
4. 5. 6. 7. 8. 9.
Livemoore 280 24,39 % 0 0 3 0,26 %
UTDSP 124 17,71 % 0 0 2 0,29 %
NAS 8359 16 % 10 0,02% 48 0,09 %
»®
® 9 4
3 E 5 2
= 3 = R £ H
3 = = 8 s g = g
2 5] 3= 8, SE 4
= 2 5 3, 23f 53
E 8g iz 29 59 £3% &3%
£ &= S5 B =l =8 =5=
3 SE ZE Ey -y SEE ZEE
=] e =l s g = g 83 =83
2 = > 5> 55 S 3 2>2 >0
= g 2 Ex| BN EFxw ZxE
2 £ 8] g2 §E-
.2 = = 2= S
E E % © § ©
3
o~ © ~ °
10. 1. 12. 13. 14. 15.
Livemoore 1044 90,94% 22 1,92% 76 6,62 %
UTDSP 423 60,04% 26 3,71 % 244 34,86 %
NAS 39738 76,27% | 772 1,48 % 11459 22 %

The experimental results demonstrate that for most loops exposing
d-form and uniform relations, we can apply well-known
techniques to discover parallelism available in loops. However,
there exist relations with coupled index variables for which novel
techniques are required permitting for extracting both fine- and
coarse-grained parallelism.

5. Conclusion

We have presented a classification of dependence relations
describing exact dependences in program loops. Techniques

PAK vol. 55, nr 10/2009

permitting for recognizing classes of relations were introduced.
These techniques were implemented in a tool that was used to
carry out experiments with popular benchmarks(Livermore loops,
UTDSP, NAS). Experiment results demonstrate that most
relations belong to the d-form or uniform class of relations for
which extracting parallelism can be fulfilled by means of well-
known approaches. But there exist relations with coupled index
variables that require devising novel techniques to extract
parallelism, for example, there is the need in developing
techniques to calculate the transitive closure of a union of
dependence relations where one or more ones are relations with
coupled index variables. Devising such techniques is the goal of
our future research.

6. References

[1] Bielecki W., Klimek T., Trifunovi¢ K.: Calculating Exact Transitive
Closure for a Normalized Affine Integer Tuple Relation, Electronic
Notes in Discrete Mathematics, 33 (2009), pp. 7-14.

Bielecki W., Klimek T., Trifunovi¢ K.: Obliczenie potegi k

znormalizowanej afinicznej relacji, Metody Informatyki Stosowanej

Nr 2/2008 (Tom 15).

[3] Kelly W., Maslov V., Pugh W., Rosser E., Shpeisman T., Wonnacott D.:
The Omega library interface guide, Technical Report CS-TR-3445,
Dept. of Computer Science, University of Maryland, College Park,
March 1995.

[4] Kelly W., Pugh W., Rosser E., Shpeisman T.: Transitive clousure of
infinite graphs and its applications, Languages and Compilers for
Parallel Computing, 1995.

[5] Kennedy K., Allen John R.: Optimizing compilers for modern
architectures: a dependence-based approach, Morgan Kaufmann
Publishers Inc., 2001.

[6] Kelly W., Maslov V., Pugh W., Rosser E., Shpeisman T., Wonnacott D.:
New User Interface for Petit and other Extensions, Technical Report,
Dept. of Computer Science, University of Maryland, College Park,
December 1996.

[7] http://www.netlib.org/benchmark/livermoore

[8] http://www.nas.nasa.gov/Software/NPB/

[9] http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html

[2

—

Artykul recenzowany

INFORMACJE

Ksiazka Wydawnictwa PAK

Ksiazka “Pomiary cieplne (zwezkowe)
w przemysle” przedstawia problematyke
pomiardw strumienia masy i ciepta ptynow
przeptywajacych w przewodach przy uzyciu
zwezek pomiarowych. Ksiazka przeznaczona
jest dla inzynieréw i technikow zajmujacych
si¢ zagadnieniami cieplno-przepltywowymi
w przemysle, energetyce i ogrzewnictwie.
W ksiazce omoéwiono przyrzady i uklady do
pomiardw zwezkowych strumienia ciepta,
produkowane przez firm¢ Metronic.

David Taler Jucek Sokolowski

POMIARY CIEPLNE (zwezkowe)
w PRZEMYSLE

[Y

Zaméwienia prosimy skladaé na adresy PAK:

Wydawnictwo PAK
00-050 Warszawa, ul. Swietokrzyska 14A,
tel./fax: 022 827 25 40

Redakcja PAK
44-100 Gliwice, ul. Akademicka 10, p. 30b,
tel./fax: 032 237 19 45
e-mail: wydawnictwo@pak.info.pl

