Identyfikatory
Warianty tytułu
Hexa platform as active environment system - mechanics and control
Języki publikacji
Abstrakty
W artykule zaprezentowano aktuator sztywności bazujący na platformie Hexa, który dedykowany jest do zadań sterowania momentem i siłą w aplikacjach z wykorzystaniem manipulatorów przemysłowych. Podejście to jest interesującą alternatywą dla znanych z literatury i obarczonych istotnymi wadami podatnościami pasywnymi i aktywnymi. W pracy zwrócono szczególną uwagę na konstrukcję mechaniczną platformy, do napędu której wykorzystano tanie serwa firmy Hitec, przeznaczone do zastosowań w robotyce. Omówiono proces projektowania platformy zaczynając od strony mechanicznej, poprzez napędy, elektronikę, a kończąc na otwartej architekturze sterowania.
In the paper the idea of using variable stiffness actuator was presented. The actuator is based on the Hexa platform (fig. 2) and is dedicated to force/torque control in the industrial manipulator applications. In view of high stiffness of the robots and usually high stiffness of the environment the passive and active compliant devices have to be used, e.g. to protect system against violent force changes. Many serious problems and disadvantages could be found during application of the known compliant systems [8]. These problems could be reduced by using of the variable stiffness actuator. The proposed actuator is an alternative solution and could be used on the manipulator side [9] or on the environment side [10, 11]. Description of using the passive and active compliance elements could found in chapter 2. Details of mechanic end electric construction of variable stiffness actuator with low cost robotic servos from Hitec are presented in chapter 3. Hardware interface (Fig. 3) is shown in the chapter 4 with main properties of the MiRPA (Middleware for Robotic and Process Control Applications) open control architecture system. Using of the MiRPA in rapid control prototyping systems is described in chapter 5. In the Fig. 6 the complete force control setup is presented. Experimental tests demonstrate that the assembly time of the robot tasks is shorter than in classic systems without variable stiffness actuator.
Wydawca
Czasopismo
Rocznik
Tom
Strony
723--726
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Instytut Automatyki Przemysłowej, Zachodniopomorski Uniwersytet Technologiczny, rafal.osypiuk@zut.edu.pl
Bibliografia
- [1] Spong M. W., Hutchinson S., Vidyasagar M.: Robot Modeling and Control. Wiley & Sons, ISBN: 0471649908, 2005.
- [2] Siciliano B., Villani L.: Robot Force Control. Springer, ISBN: 978-0-7923-7733-7, 2000.
- [3] Haralick R. M., Shapiro L. G.: Computer and Robot Vision. Addi-son-Wesley, Volume II, ISBN: 0201569434, 2002.
- [4] Craig J. J.: Introduction to robotics: mechanics and control. Prentice-Hall, ISBN: 0201543613, 2003.
- [5] Winiarski T., Zieliński C.: Implementation of Position-Force Control in MRROC++. In: 5th International Workshop on Robot Motion and Control, Ro-MoCo’05. Proceedings, June 23–25, 2005, pp. 259–264.
- [6] Osypiuk R., Finkemeyer B.: Hybrid Model Based Force-Position Control: Theory and Experimental Verification. Robotica, Cambridge University Press, UK, Vol. 24, Issue 06, pp. 775-783, 2006.
- [7] De Luca A., Albu-Schäffer A., Haddadin S., Hirzinger G.: Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm. Inter. Conf. On Inteligent Robots and Systems, pp. 1623-1630, 2006.
- [8] Wang W., Loh R. N. K., Gu E. Y.: Passive compliance versus active compliance in robot-based automated assembly systems. Industrial Robot, Vol. 25, No 1, pp. 48-57, 1998.
- [9] Denkena B., Wedler A., Hackbarth A., Hackelöer F., Friederichs O. J.: Hexapoder Roboter mit McKibben Muskeln als Ausgleichs- und Dämpfungseinheit für den Einsatz von Robotern in der Produktion. Robotik 2008, VDI, München, Germany, 2008.
- [10] Osypiuk R., Kroger T.: A Low-cost Hexa Platform for Efficient Force Control Systems Using Industrial Manipulators. Solid State Phenomena, vol. 147-149, pp. 1-6, 2009.
- [11] Osypiuk R.: Hexa Platform as Active Environment System, International Workshop on Robot Motion and Control, Czerniejewo, Poland, 2009.
- [12] Gough V. E.: Contribution to discussion of papers on reaearch in automobile stability, control and tyre performance, Proc. AutoDiv. Inst. Mech. Eng., pp. 392-395, 1956.
- [13] Merlet J. P.: Parallel Robots, Kluwer Academic Publishers, 2000.
- [14] Gough V. E., Whitehall S. G.: Universal tire test machine, Proc. 9th Int. Technical Congress F.I.S.I.T.A., Vol. 117, No 1, pp. 117-135, 1962.
- [15] Hunt H. H.: Structural kinematics of in parallel actuated robot arms. Journal of Mechanismus, Transmissions and Automation in Design, pp. 705-712, 1983.
- [16] Pierrot F., Dauchez P., Fournier A.: Fast parallel robots. Journal of Robotic Systems, Vol. 8, No 6, pp. :829–840, 1991.
- [17] Hesselbach J., Bier C., Campos A., and Löwe H.: Direct kinematic singularity detection of a hexa parallel robot. In Proc. of IEEE International Conference on Robotics and Automation, pp. 3249–3254, 2005.
- [18] Fedus A.: Projekt i konstrukcja równoległego manipulatora o 6-ciu stopniach swobody. Politechnika Szczecińska, Praca dyplomowa, 2008.
- [19] http://www.omg.org/technology/documents/formal/components.htm/.
- [20] http://www.orocos.org/.
- [21] Finkemeyer B.: Robotersteuerungsarchitektur auf der Basis von Aktionsprimitiven. Fortschritte in der Robotik, Volume 8, Shaker-Verlag, 2004.
- [22] http://www.rob.cs.tu-bs.de/research/projects/hexa/.
- [23] http://www.rob.cs.tu-bs.de/research/projects/active/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0070-0006