687

PAK vol. 55, nr 8/2009

Jacek ZBYLUT, Tomasz MAKA, Piotr DZIURZANSKI

WEST POMERANIAN UNIVERSITY OF TECHNOLOGY, SZCZECIN,
FACULTY OF COMPUTER SCIENCE & IT

NoC-based Realization of Multi-core Speech Encoders

Mgr inz. Jacek ZBYLUT

He received the MSc degree in computer science from
Szczecin University of Technology in 2008. He is
currently working as a programmer. His scientific
interests include high-level programming and hardware
realization of digital signal processing systems.

e-mail: jzbylt@wi.ps.pl

Dr inz. Piotr DZIURZANSKI

He received the MSc and PhD degrees in computer
science from Szczecin University of Technology in
2000 and 2003, respectively. He is currently working
as an assistant professor in Faculty of Computer
Science & Information Systems, West Pomeranian
University of Technology. His scientific interests
include hardware-software co-synthesis, high level
synthesis and formal verification.

e-mail: pdziurzanski@wi.ps.pl

Dr inz. Tomasz MAKA

He received the MSc and PhD degrees in computer
science from Szczecin University of Technology in
2000 and 2005, respectively. He is currently working
as an assistant professor in Faculty of Computer
Science & Information Systems, West Pomeranian
University of Technology. His scientific interests
include hardware realization of digital signal
processing systems and acoustic signal processing
techniques.

e-mail: tmaka@wi.ps.pl

Abstract

In this paper, we demonstrate a technique for mapping a multimedia
streaming application into a mesh NoC using an example of speech
encoder named SPEEX. To decrease the size of the target mesh, we use an
algorithm for merging functional blocks using various metrics, such as
core code size or execution time. We propose and test three algorithms for
core mapping. According to the presented experimental results, the
process of assigning the functional block into the NoC mesh is strongly
influenced by the selected strategy.

Keywords: Network on Chip, core mapping, speech encoder.

Wielordzeniowa realizacja koderow mowy
wykorzystujaca sie¢ NoC

Streszczenie

W artykule zaprezentowano technik¢ odwzorowywania blokdw
realizujacych algorytmy strumieniowe na struktur¢ mesh sieci NoC
z wykorzystaniem przyktadu — kodera mowy SPEEX. Aby zmniejszy¢
rozmiar docelowej sieci NoC, wykorzystano algorytm taczenie
funkcjonalnych blokow wykorzystujacych wybrane miary, takie jak
rozmiar kodu lub czas wykonania. Dla optymalizacji sieci pod wzglgdem
obciazen czasowych oraz liczby instrukcji zawartych w poszczegdlnych
blokach IP rozpatrywana jest sieci NoC o rozmiarach 6x6. Rozmiar
omawianej struktury wynika z zestawienia kodera Speex o 4 roznych
przeptywnosciach. Zaproponowano i przetestowano trzy algorytmy
odwzorowujace rdzenie. Zaprezentowane algorytmy generuja lokalnie
najlepsze rozwiazania, dzigki wprowadzeniu funkcji heurystyki. Z punktu
widzenia czasu realizacji zadan przez niezalezne rdzenie, najmniejszy
catkowity transfer wuzyskano przy uzyciu algorytmu drugiego.
Z wykorzystaniem dodatkowego algorytmu balansujacego uzyskano
zmniejszenie standardowego odchylenia transferow na poziomie 20%.
Otrzymane podczas badan wyniki dowodza, ze proces ustalenia
odwzorowania blokow IP podczas projektowania sieci NoC jest niezwykle
istotny. Efektywnos¢ i wydajnosé otrzymanego uktadu SoC moze w duzej
mierze zaleze¢ od obranej strategii przydziatu elementéw funkcyjnych
algorytmu DSP.

Stowa kluczowe: sieci wewnatrzuktadowe, odwzorowanie rdzeni, koder
mowy.

1. Introduction

Network on Chip (NoC) is a communication technique
connecting cores inside a Multi Processor System on Chip
(MPSoC) that offers high bandwidth and good concurrent
communication capability [1]. A mesh is one of the most often
used on-chip network topologies owing to its regularity and
reliability caused with a large number of redundant
interconnections between nodes [1]. In this architecture, each
mesh node is comprised of the IP core realizing a particular stage
of the algorithm and a router which is typically connected to four
neighboring nodes. In mesh-based NoCs the most popular routing
algorithm is XY where a flit (i.e. the smallest portion of data that
can be sent atomically) is firstly routed according to the X axis as
long as the X coordinate is not equal to the X coordinate of the
destination core, and then the flit is routed vertically. Since the
mesh architecture and the XY routing algorithm are rather
inherent to the popular NoC solutions, one of the most important
problems for NoC-based chip designers is to propose a mapping
scheme of IP cores into mesh nodes that decreases the contention
level [2]. This issue is especially crucial in the case of multimedia
streaming algorithm. In this paper, we focus on this issue and
introduce a few mapping algorithms. They are then verified with
a popular speech encoder [4].

2. A Speech Encoder Example

In this paper, the proposed mapping techniques are illustrated
with the example of the SPEEX speech encoder. Below, some
details on this encoder are provided [3, 4].

After analysis of the code of the SPEEX encoder, eight main
modules can be singled out. These modules are: ¢, — Initialization,
¢ — Linear Prediction Coefficients (LPC) calculation, ¢, — Line
Spectral Pair (LSP) calculation, c; — Analysis/Synthesis filters, ¢4
— Long-Term Prediction calculation, ¢s5 — Overlapped codebook
search, cs — Vector quantization, ¢; — LSP vector quantization, as
presented in Fig. 1. The literal denotations introduced in this
figure (i.e., labels cy-c;) are used in the sequel of this paper.

In the SPEEX encoder, each signal frame is composed of 160
samples and is divided into 4 subframes — 40 samples each. The
flows underlined in the figure denote the stages that are executed
for every subframe. As the algorithms presented latter in this
paper require information about computation time of each module,
we have measured these time for the encoder software realization
run on a PC computer (Pentium IV 1.6 GHz). The obtained results
are presented in Tab. 1; the table shows the time (in ps) needed for
processing a single frame, i.e., 160 samples. Due to the encoder
algorithm, these results vary for different subframes and the
measurements presented in the table have been taken for the worst
cases.

688

Fig. 1. Data flow graph of the SPEEX
Rys. 1. Diagram przeptywu danych kodera SPEEX

Tab. 1. Computational time [ps] and code size [bytes] of NoC cores for various
encoder configurations
Tab. 1. Czas obliczen [ps] oraz rozmiar kodu [bajty] rdzeni NoC dla réznych

konfiguracji kodera

NoC cores
Encoder flow
c ‘ ¢y ‘ cs ‘ o ‘ c3 ‘ [‘ ¢ ‘ cy
8 kbps 65 13 440 370 | 1116 | 160 150 720
11 kbps 65 13 1200 370 | 1116 = 560 150 720
15 kbps 65 13 440 370 | 1116 | 360 150 720
18.2 kbps ‘ 65 ‘ 13 ‘ 1164 ‘ 370 ‘ 1116 ‘ 1280 ‘ 150 ‘ 720 ‘

Code size 5016 = 808 | 9872 11888 25720 11648 4688 8776

From the table it follows that the only differences for various
encoder flows are observed in modules ¢s and c¢g. This difference
is caused by the various size of the code books that have to be
browsed to find the appropriate vector representing the given
voice sample. Consequently, between the sender and receiver the
longer index (in bits) is to be sent.

3. The Encoder Mapping into a Mesh Structure

In order to illustrate the proposed mapping technique, we utilize
an encoder with four different flows (enumerated in Tab. 1). The
elements labeled with the numbers 0 to 35 in Fig. 2 denote the
separate functional blocks of 4 subnetworks, each realizing the
SPEEX encoding for a single data flow [4] (in every subnetwork
eight cores realize the functionality of the cy-c; blocks, the
remaining block is a buffer). We decided to exclude from the
encoder a number of additional features, such as silence detection,
dynamic dataflow selection, echo cancellation and an additional
signal filtering stage. Since our secondary goal was to synthesize
the encoder in an FPGA chip, we translated the C-code into the
SystemC code and removed from the SPEEX code all the
SystemC non-synthesizable operations, such as dynamic pointers,
variable and function references, dynamic memory allocation etc.

We analyze an initial mesh NoC of the 6x6 size, where the
cores realizing four various transfers are to be placed (Fig. 2).
However, the goal is to place all the 36 functional blocks into
a NoC of size 3x3. The criteria for the functional block placement
are: its computation time and the core code size. Following these
assumptions, the number of possible core mappings can be
denoted as a Stirling number of a second kind {#/k}. This number
informs about the number of possibilities of splitting a n-element
set into k non-empty sets, which in our case can be described as
{36/9}. This is a set of all possible solutions, unable to be
analyzed in a reasonable time exactly.

In our research we have made the following assumption: the
initial NoC is comprised of four subnetworks labeled with number
0-3. Each of these subnetworks realizes the encoder with different
bit flow.

The parameters that we have taken into account in the core
mapping problem is the code size of the separate modules and

PAK vol. 55, nr 8/2009

their computational time on a PC computer. The modules from the
1-3 subnetworks are to be matched with the modules of the Oth
subnetwork. The choice of the element to be matched with the
selected module form the Oth subnetwork is performed based on
the specific metric, denoting its feasibility with respect to the
given target module in the Oth subnetwork. The basis of the metric
computation for the separate cores is the calculation of the average
value from the particular parameter of all the blocks. This average
is treated as the value that is to be reached while the new elements
are merged with the Oth subnetwork. The aim of the algorithm is
to obtain such the block placement that the standard deviation of
the selected parameter is minimized. Thus, for each block from the
Oth subnetwork the algorithm tries to realize the formula
A=min(|S(c;)-avg|), where S(c;) is the cumulated value of the
analyzed parameter for block c;, and avg is the average value of
this parameter for the whole NoC. Each of the 9 values of every
element from subnetworks 1-3 is computed using the formula
hi=S(c;)—avg+c;, where h;; denotes the fitness of the j-th node after
being merged with the i-th one. This formula indicates how node
¢; complements S(c;) to the average value, avg. The algorithm
iterates through all the blocks, computes the value of the 4 metric
and selects the most promising solution. The minimal value of 4,;
denotes a better fitness of the ¢, element.

Fig. 2. Example of a NoC realizing SPEEX encoding with four various data flows
Rys. 2. Przyktad sieci NoC realizujacej kodowanie SPEEX z czterema roéznymi
przeptywnos$ciami danych

The next stage is to choose the algorithm for the selection of the
block that is to be placed in the Oth network. After this selection,
the process of searching the whole 6x6 NoC network is performed
for the selection of the node that is to be removed from this
network and moved to the appropriate place in the new 3x3
network. Having selected the node, it is moved to the target
position and the actualization of the block parameters is
performed. Then, the next iteration of the node choice takes place.
When all the nodes are assigned to the new places, the next stage
of our approach is carried out.

At this moment it is possible to perform an optional step of the
proposed approach: to find minimal elements included in the
individual blocks and moving them into the remaining blocks of
the Oth subnetwork in order to additionally balance the parameter
distribution inside a network. Elements are added in the places
where the value of the considered parameter is below the average
value, avg. Then, the process of the transfer mapping into the
block structure is to be carried out. After determining all the paths
for the transmitted data, the total amount of the transferred data is
summarized for each router, its ports and the links connecting the
routers. There is a parameter of the balancing algorithm, o, which
is the percentage of the average code size. The algorithm is not
allowed to move blocks from the j-th node if the code size to be
removed exceeds a per cent of the whole code size and it cannot
add any additional elements to the i-th block if the total code size,
after adding the last element of the j-th block, exceeds by a
percent the total code size.

The first mapping algorithm of functional blocks into the NoC
mesh nodes is based on the analysis of each block from the Oth
subnetwork and to select for this block the most feasible (using the
h metric) element from the remaining subnetworks. After a given
block is selected, it is removed from the pool of the block to be
assigned. The algorithm is run in a loop for all the blocks until the
block pool is empty. In the second mapping algorithm, the
searching problem is performed for the subsequent block from the

689

PAK vol. 55, nr 8/2009

Oth subnetwork. Consequently, the last blocks from this
subnetwork are associated with the elements with worse values of
the 4 metric. In order to avoid this situation, every second iteration
the elements are analyzed in the reverse order. The third mapping
algorithm is based on a global searching of the Oth subnetwork (of
the 3x3 size) and selection of the element that is characterized
with the best # value from all 9 blocks. The block selection is not
influenced with the currently analyzed element from the Oth
network as the globally most suitable element is chosen for the
arbitrary Oth subnetwork node.

4. Experimental results

In the first experiment, we determined the computation time for
each block for the four analyzed variants of the SPEEX encoder
and then used the described earlier algorithms for core mapping.
In Tab. 2, the total amount of transferred data and the standard
deviation of the transferred data by all the nodes are presented.

Tab. 2. Total amount (T) and standard deviation (SD) of transferred data
(the computation time parameter)
Tab. 2. Laczna liczba (T) i odchylenie standardowe (SD) transmitowanych

danych (parametr - czas obliczen)

Algorithm I Algorithm IT Algorithm III
T 2712320 B 2379056 B 2684176 B
SD 51.2091 ps 59.6395 us 80.448 ps

The lowest amount of transferred data are obtained with
algorithm II. According to the standard deviation, however,
algorithm I leads to the most balanced transfers on all the network
nodes. Algorithm III is the least favorable in both criteria of the
total amount and the standard deviation of the transferred data.

The next analyzed parameter is the even distribution of the
amount of code (in bytes) inside each of the 9 blocks. The
obtained results are presented in Tab. 3.

Tab. 3. Total amount (T) and standard deviation (SD) of transferred data
(the amount of code parameter)
Tab. 3. Laczna liczba (T) i odchylenie standardowe (SD) transmitowanych
danych (parametr - rozmiar kodu)
Algorithm I Algorithm IT Algorithm III
T 3210160 B 2603488 B 3854784 B
SD 1978.12B 1421.11 B 204991 B

The lowest value of the standard deviation is obtained with
algorithm II. (The average amount of code to be placed in each
node is equal to 36858 bytes.) This algorithm leads to the best
results also with respect to the second criteria, i.e., the total
amount of transferred data. The relatively high value of the
standard deviation for algorithm I means that the differences of
code size implemented in the cores are rather large and vary from
8 to 5177 bytes.

Taking into account the results presented in Tab. 2 and 3 one
may conclude that the more even balance of code amount
implemented in the cores leads to the increase of the transfers in
the network.

In Tab. 4, the results of the influence of execution time
balancing on parameters of the NoC are provided. Having set the
parameter a to 5% improves the obtained parameters. The highest
improvement is observed in the case of Algorithm I, where the
standard deviation decreases by 563 bytes (27%). For the
remaining algorithm (II and III), the standard deviation decreases
by 9%. The amount of transferred data decreases slightly (1%). If
parameter a is set to 25%, Algorithm III leads to the decrease of
the standard deviation by 23%, whereas for the remaining
algorithm the obtained values are similar to the ones obtained with
the previous parameter set.

Tab. 4. The influence of balancing algorithm (in bytes) on standard deviation (SD)
and Total transfer (T)
Tab. 4. Wplyw algorytmu balansowania (w bajtach) na odchylenie standardowe
(SD) i taczny transfer (T)
. Without Balancing
Algorithm Parameter .
balancmg a=5% a=25%
I SD 1978.12 1454.85 1454.85
T 3210160 3204336 3204336
" SD 1421.11 1272.93 1272.93
T 2603488 2599280 2599280
- SD 2049.91 1869 1588.95
T 3874784 3854784 3873232
200400 224536
Wi 1,32, 29, 2,12,
10 35 26 27,9,17 20,24
e (-2868) (912)
118752 140224
2 i 2 3 3 2
2 g 2 5 2 g
4688 44688
9,21, 11, 5,30, 25,
28,17, 10 e 33
(-4686) (1870)
70720 63664
45232 99896
6,13, 15 7.22,26 831,16
(303) (-73) (127)
69184 129344
Fig. 3. Decreasing of standard deviation for Algorithm I
Rys. 3. Zmniejszenie odchylenia standardowego dla Algorytmu I

An example of core mapping with the additional process of
balancing the code size in nodes is presented in Fig. 3. The
numbers in gray denotes the blocks that have been moved to
another block; the target place is underlined. The standard
deviation of the code size in nodes has been decreased from
1978,12 to 1454,85. The relative deviation has substantially
decreased in block 5 (from -139 to 73), 7 (from -983 to -134), and
8 (from 5117 to 3661) (in bytes).

5. Conclusion

In this paper, we presented a technique for mapping SPEEX
encoder into a mesh NoC. To decrease the size of the target mesh,
we used an algorithm for merging functional blocks using various
metrics, such as core size or execution time. We proposed and
tested three algorithms for core mapping. For the execution time
criteria of separate cores the lowest total transfer value were
obtained with the Algorithm II. Similarly, the same algorithm
leaded to the lowest transfer when the amount of code of each core
was taken into account. Additionally, we used a balancing scheme
which decreased the standard deviation by more than 20 per cent.

6. References

[1] Bjerregaard T., Mahadevan S.: A Survey of Research and Practices of
Network-on-Chip, ACM Computing Surveys (CSUR), vol. 38, 2006, Article 1.

[2] Hansson A., Goossens K., Radulescu A.l.: A Unified Approach to
Mapping and Routing on a Network-on-Chip for Both Best-Effort and
Guaranteed Service Traffic, VLSI Design, vol. 2007.

Herlein G., Valin J.-M., Morlat S., Hardiman R., and Kerr P.: RTP
Payload Format for the Speex Codec, Internet Engineering Task
Force, Internet-Draft draft-ietf-avt-rtp-speex-05, February 2008.

[4] Valin J.-M.: The Speex Codec Manual Version 1.2 Beta 2, 2007.

3

—_—

Artykul recenzowany

